

X-definition 4.2

Language Description

Author:
Version:
Date:

V.Trojan
4.2.2.26
2024-03-31

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 i

Contents

1 Annotation .. 1

2 Essential concept ... 2
2.1 Quantifier and Validation Section ...3
2.2 Model of Element..3
2.3 Model of attribute or text node (model of data value) ..3
2.4 Arbitrary attribute(s) (xd:attr) ...3
2.5 Arbitrary element (xd:any) ..4
2.6 Concatenated text of element (the attributes xd:text and xd:text content) ..4
2.7 Reference ..5
2.8 X-position ..6
2.9 Extension and modification of the referred model ..6
2.10 Event ...7
2.11 Group ..7

2.11.1 A mixed group of nodes (xd:mixed) -- 7
2.11.2 Selection of nodes (xd:choice) --- 7
2.11.3 A sequence of nodes (xd:sequence) --- 8
2.11.4 Group as a model and the reference to a group -- 8

2.12 BNF grammar in X-definition ...9
2.12.1 BNF production rule -- 9
2.12.2 BNF terminal symbols --- 9
2.12.3 Case insensitive symbols -- 9
2.12.4 BNF set of characters -- 9
2.12.5 BNF quantifier (repetition of a rule)-- 9
2.12.6 BNF expression -- 10
2.12.7 Comments and whitespaces --- 10
2.12.8 Implemented predefined rules -- 10
2.12.9 Implemented methods for handling the internal stack --- 11
2.12.10 Declaration of externally defined method -- 12
2.12.11 BNF declaration --- 12

2.13 Macro (xd:macro) .. 13
2.14 X-definition Header ... 14

2.14.1 xd:name --- 14
2.14.2 xd:root --- 14
2.14.3 X-script options in X-definition header -- 14
2.14.4 Specification of meta namespace--- 15
2.14.5 xd:include --- 15
2.14.6 xd:importLocal--- 15
2.14.7 Implementation information -- 15

2.15 Declaration of variables, methods, and data types (xd:declaration) .. 16
2.16 Structure of X-definition ... 16
2.17 Collection of X-definitions ... 16

3 Language localization of XML (xd:lexicon) .. 18

4 X-script of X-definition ... 19
4.1.1 Identifiers in X-script --- 20
4.1.2 Types of values of variables and expressions in X-script -- 20

4.1.2.1 int (integer numbers) --- 20
4.1.2.2 float (floating-point numbers) -- 20
4.1.2.3 Decimal (decimal numbers) --- 21
4.1.2.4 BigInteger (any integer number) --- 21
4.1.2.5 String (character strings) -- 21
4.1.2.6 Datetime (date and time values) --- 21
4.1.2.7 boolean (Boolean values) -- 23
4.1.2.8 char (character) -- 24
4.1.2.9 Locale (information about the region) -- 24
4.1.2.10 Regex (Regular expression) -- 24
4.1.2.11 RegexResult (a result of the regular expression) --- 24
4.1.2.12 Input/Output (stream) -- 24

X-definition 4.2 Language Description

ii Version: 4.2.2.26, Date: 2024-03-31

4.1.2.13 Element (XML element) -- 24
4.1.2.14 Bytes (array of bytes) --- 24
4.1.2.15 NamedValue (named value) -- 25
4.1.2.16 Container (sequence and/or map of values) -- 25
4.1.2.17 Exception (program exception) --- 25
4.1.2.18 Parser (the tool used to parse string value) --- 25
4.1.2.19 Parseresult (a result of parsing/validation) --- 25
4.1.2.20 Report (message) -- 25
4.1.2.21 BNFGrammar (BNF grammar) -- 26
4.1.2.22 BNFRule (BNF grammar rule) --- 26
4.1.2.23 EmailAddr (Email address) -- 26
4.1.2.24 GPSPosition (value containing GPS position) -- 26
4.1.2.25 Price (price value containing a monetary amount in a given currency) -- 27
4.1.2.26 Currency (value of Currency) -- 27
4.1.2.27 InetAddr (value containing IP address) --- 27
4.1.2.28 URI (URI – universal relocation identifier) --- 27
4.1.2.29 uniqueSet (set of unique items – table of rows) -- 28
4.1.2.30 uniqueSetKey (the key of a row from the uniqueSet table) -- 28
4.1.2.31 Service (database service; access to a database) -- 28
4.1.2.32 Statement (database command) -- 28
4.1.2.33 ResultSet (a result of a database command) -- 28
4.1.2.34 XmlOutStream (data channels used for continuous writing of XML objects to a stream) ---------------------------- 28

4.1.3 Access to values from the processed document -- 28
4.1.4 A local variable in X-script -- 29
4.1.5 Variables of the element model --- 29
4.1.6 Declared objects -- 29

4.1.6.1 Declared variables --- 29
4.1.6.2 Declared methods --- 30
4.1.6.3 Declared data type -- 31

4.1.7 Built-in variables and constants --- 32
4.1.8 Expressions --- 32
4.1.9 Events and actions -- 34
4.1.10 Quantifier (Specification of occurrence) -- 35
4.1.11 Special quantifiers (ignore, illegal, fixed) --- 36
4.1.12 Check the data type -- 36
4.1.13 Implemented validation methods -- 37
4.1.14 Set of unique values (uniqueSet) --- 41
4.1.15 Set of unique values (“table”) without named entries -- 42
4.1.16 Linking tables of unique values -- 42
4.1.17 Template element -- 42
4.1.18 X-script commands --- 43
4.1.19 Implemented X-script methods --- 43
4.1.20 Mathematical methods --- 62
4.1.21 External methods --- 64
4.1.22 Options -- 65
4.1.23 The references to the object of X-definitions -- 67

4.1.23.1 Reference to a model of an element -- 67
4.1.23.2 Reference to a model of an element with a different namespace --- 68
4.1.23.3 Reference to a sequence of descendants of the model of an element -- 68

4.1.24 Comparison of the structure of models --- 69

5 X-definition processing modes ... 70
5.1 Validation mode .. 70
5.2 Construction mode .. 71

5.2.1 Construction of element -- 71
5.2.2 Construction of attributes -- 72
5.2.3 Construction of text nodes --- 72

6 JSON/XON, YAML, Properties/Windows INI ... 73
6.1 Models of JSON ... 73
6.2 JSON simple values ... 73
6.3 What is XON? .. 73
6.4 Models of XON/JSON objects .. 74
6.5 Directives .. 76

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 iii

6.6 Specification of properties with %script directive ... 76
6.7 JSON/XON arrays .. 76
6.8 Specification of properties of arrays with %script directive ... 76
6.9 %oneOf directive ... 77
6.10 %anyName directive of named items in the map .. 77
6.11 %anyObj directive ... 77
6.12 Reference to the JSON model .. 78
6.13 YAML... 78
6.14 Properties and Windows INI.. 78

7 X-components ... 80
7.1 Values in X-component of getters in XON objects ... 80
7.2 Access to values of X-component .. 80
7.3 X-component commands .. 81

7.3.1 %class -- 81
7.3.2 %bind -- 81
7.3.3 %interface -- 81
7.3.4 %ref -- 81
7.3.5 %enum -- 81

8 Invoking X-definitions from Java .. 82
8.1 Execution of Validation Mode ... 82
8.2 Construction Mode ... 83
8.3 Setting properties ... 84
8.4 Using XQuery .. 85
8.5 Incremental writing of large XML files ... 85
8.6 JSON data .. 86
8.7 YAML data ... 87

Appendix A: X-definition of X-definition 4.2 .. 88

Appendix B: XON syntax ... 101

References ... 104

X-definition 4.2 Language Description

iv Version: 4.2.2.26, Date: 2024-03-31

Tables
Table 1 - Control characters in the date mask ... 22
Table 2 - Names of types of parameter values... 30
Table 3 - Built-in variables and constants .. 32
Table 4 - Alias keywords used as the alternative notation of operators .. 32
Table 5 - Events .. 34
Table 6 - Named parameters corresponding to facets in XML schema .. 37
Table 7 - Validation methods of XML schema data types .. 38
Table 8 - Other validation methods of data types implemented in X-definition (and not in XML schema) 39
Table 9 - JSON validation methods .. 40
Table 10 - General methods implemented in X-script .. 44
Table 11 - Names of the X-script types and the corresponding type ID ... 52
Table 12 - Methods of objects of all types ... 52
Table 13 - Methods of objects of the type BNFGrammar ... 52
Table 14 - Methods of objects of the type BNFRule ... 53
Table 15 - Methods of objects of the type Bytes .. 53
Table 16 - Methods of objects of the type Currency .. 53
Table 17 - Methods of objects of the type Container ... 53
Table 18 - Methods of objects of the type Datetime .. 54
Table 19- Methods of objects of type Duration (time interval) .. 55
Table 20 - Methods of objects of the type Element.. 56
Table 21 - Methods of objects of the type EmailAddr .. 56
Table 22 - Methods of objects of the type Exception ... 56
Table 23 - Methods of objects of the type GPSPosition.. 57
Table 24 - Methods of objects of the type Input .. 57
Table 25 - Methods of objects of the type IPAddr .. 57
Table 26 - Methods of objects of the type Locale .. 57
Table 27 - Methods of NamedValue objects .. 58
Table 28 - Methods of objects of the type Output ... 58
Table 29 - Methods of objects of the type ParseResult .. 58
Table 30 - Methods of objects of the type Price ... 59
Table 31 - Methods of objects of the type Regex ... 59
Table 32 - Methods of objects of the type RegexResult ... 59
Table 33 - Methods of objects of the type Report .. 59
Table 34 - Methods of objects of the type ResultSet .. 59
Table 35 - Methods of objects of the type Service ... 60
Table 36 - Methods of objects of the type Statement .. 60
Table 37 - Methods of the type String .. 60
Table 38 – Methods of objects of the type Telephone ... 61
Table 39 – Methods of objects of the type uniqueSet .. 61
Table 40 – Methods of objects of the type uniqueSetKey .. 62
Table 41 – Methods of objects of the type URI .. 62
Table 42 – Methods of objects of the type XmlOutStream .. 62
Table 43 - Methods of mathematical functions (taken from the class java.lang.Math) ... 62
Table 44 - Methods of mathematical functions (taken from java.math.BigDecimal) .. 63
Table 45 - Value types passed to external Java methods ... 64
Table 46 - Options .. 65
Table 47 - Conversion of X definition data types in X-component getters and XON values ... 80
Table 48 - Properties .. 84

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 v

Changes in this document

4.2.2.19
(1) Added a new property to set the list of names of the code tables for the xml data value being parsed. If

the value contains a character that is not defined in the given character set list, the parser will report

an error. The name of the property is `xdef_string_codes` (see Table 48 - Properties).

(2) .A new static method `XDFactory.writeXDPoolClass(...)` has been implemented. This method generates

the source code of the Java class class created from the XDPool object. This class contains the static

method `getXDPool()` that returns the specified XDPool object.

4.2.2.9
(1) In the X-script method `now` if the default time zone is not null it is set to the result.

(2) The method `getDefaultZone` is now in the interface of `org.xdef.proc.XXNode`.

(3) The new X-script method ` getDefaultZone ` returns a string with a default zone ID or null if the default

time zone is not specified.

4.2.2.8
(1) The new property ` xdef_defaultZone` is used to set the default time zone (see Table 48 - Properties).

(2) A new method `getDefaultZone()` has been implemented in the XDPool class, which returns the default

time zone or null if none has been specified.

(3) X-script methods `dateTime`, `dateYMDhms`, and `xdatetime`: if the result of parsing source data does

not contain a time zone and the default time zone is set, then this default time zone is set to the

result datetime value.

(4) Implemented new X-script method currencyCode() of Currency value which returns string with ISO 4217

currency code (see 4.1.2.26 Currency (value of Currency)).

(5) Implemented new boolean X-script method isXPath2Supported() which returns true if the XPath2

expression is supported in Xsript methods xpath(s) and from(s) (see Table 10 - General methods

implemented in X-script).

(6) Implemented new boolean X-script method isXQuerySupported() which returns true if the X-script

xquery(s) method is supported (see Table 10 - General methods implemented in X-script).

Version 4.2.2.6
(1) The argument of validation method regex(s) now accepts Java regular expression format. However, the

format of argument %pattern in all other types of methods requires the format of XML schema

regular expression.

Version 4.2.2.5
(1) .Implemented new method `getNamedItems` of `Container` object

Version 4.2.2.1
(1) The `clearReports` option and the `preserveReports` option are implemented (see Table 46 - Options).

The default value of clearing reports in the compiled set of X-definitions in the XDPool is possible to

set by the property `clearReports` value to `true` or `false`. If the property is not set the default value

is `true`.

Version 4.2.1.1
(1) Implemented new operator “CHECK” (see Table 4 - Alias keywords used as the alternative notation of

operators in 4.1.8 Expressions)

(2) Utilities for conversion XML schema to/from X-definition are now available as

“org.xdef.util.XdefToXsd” (conversion X-definition to XML schema)

“org.xdef.util.XsdTXdef” (conversion XML schema to X-definition)

X-definition 4.2 Language Description

vi Version: 4.2.2.26, Date: 2024-03-31

See task9 in examples or xdef-4.2_programming.pdf in documentation on

https://github.com/Syntea/xdef

Note the project https://github.com/Syntea/xdef-transform. is deprecated and no longer supported

Version 4.2.0
(1) X-definition namespace version 4.2 is: http://www.xdef.org.xdef/4.2.

(2) X-definition version 2.0 is no longer supported. However, versions 3.1, 3.2, 4.0, and 4.1 are supported.

(3) Utilities for conversion XML schema to/from X-definition (classes `org.xdef.util.XdefToXsd`,

`org.xdef.util.XsdToXdef`) were removed from this project. (Those utilities are now available in a

separate project on https://github.com/Syntea/xdef-transform.)

(4) Implemented XON, the new format of object notation (see Chapter 6).

(5) Implemented models of JSON, YAML, Properties, and INI data.

(6) Implemented new validation methods `gps` and `price` (see Table 30 - Methods of objects of the type

Price)

https://github.com/Syntea/xdef
https://github.com/Syntea/xdef-transform
https://github.com/Syntea/xdef-transform

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 1 / 104

1 Annotation
This document describes the programming language “X-definition“. X-definition is intended for describing,
processing, and constructing data in XML form (and also JSON, YAML, etc).

X-definition is an open-source tool that describes the structure and properties of data values in an XML document.
In addition, X-definition allows you to describe the processing and construction of XML objects. X-definition can
thus replace existing technologies commonly used for XML validation - namely DTD (Data Type Definition), XML
Schema (XSD), Schematron, and also even XSLT.

X-definition allows you to combine XML document validation with data processing (by describing the actions
assigned to each event when processing XML objects). Compared to technologies based on DTD and XML schema,
the advantage of X-definition is (not only) higher readability and easier maintenance. X-definition was designed to
handle XML data sets of virtually unlimited size beyond the size of working memory.

An important feature of X-definition is the maximum respect for the structure of the described data. The form of
an X-definition is an XML document with a structure similar to the XML data being described. This allows a quick
and intuitive description of the XML data and its processing.

The properties of XML items (and the events that can occur during the process) are described by the X-script
language. In most cases, it is sufficient to replace the values described in the XML data model with the X-script
language in the X-definition. You can also incrementally add the required data processing actions to the X-script.

X-definition technology also allows you to generate source code for classes representing XML elements described
by an X-definition in Java. Such a class is called an X-component. Instances of XML data can be used in the form of
X components (similar to JAXB technology).

Starting with X-definition version 4.2, it is possible to validate and process data in JSON and YAML, Properties,
Windows INI, and CSV (comma-separated values) formats in addition to XML. JSON data structure models are
described by xd:json or xd:ini elements.

The X-definition also allows language localization of the tag names of the described XML data. Different language
versions can be described by elements in the xd:lexicon object.

Note we use the term "X-definition" in this document in two different senses: either as the name of a programming
language or as an XML element containing the code of the X-definition language.

Note it is assumed that the reader of this document already knows the elementary principles of XML. To get the
most out of this document, you should have at least basic knowledge of the Java programming language.

Questions, remarks, and bug reports please send to: xdef@syntea.cz.

The zip file with jar files, documentation, sources, and examples is available at:

https://www.xdefinice.cz/download-sekce/

X-definition tutorial, latest version compiled jar file, source code, documents, and articles are available at:

https://xdef.syntea.cz/tutorial/

The actual version of X-definition can be downloaded from https://github.com/Syntea/xdef

You can also download jar files, documentation, and sources from the Nexus repository manager at:

https://oss.sonatype.org/#nexus-search;gav~org.xdef

mailto:xdef@syntea.cz
https://www.xdefinice.cz/download-sekce/
https://xdef.syntea.cz/tutorial/
https://github.com/Syntea/xdef
https://oss.sonatype.org/#nexus-search;gav~org.xdef

X-definition 4.2 Language Description

2 / 104 Version: 4.2.2.26, Date: 2024-03-31

2 Essential concept
The basic concept of X-definition is the “model” of an XML element. A simple example of the model you can get is
if all data values (i.e. attributes and/or text nodes) in an XML element are replaced by a description of its data
type properties.

Let's have the following example of XML data:
<Employee FirstName = "Andrew"
 LastName = "Aardvark"
 EnterDate = "1996-3-12"
 Salary = "21700" />
 <Address Street = "Broadway"
 Number = "255"
 Town = "Beverly Hills"
 State = "CA"
 Zip = "90210" />
 <Competence> electrician </Competence>
 <Competence> carpenter </Competence>
</Employee>

You can see that this record contains different data types (names, dates, salary, description of qualification, etc.).
We can describe the contents of a such record when we replace the data values with their description. Let's say
the attribute "Salary" is optional, and the other attributes are required. The expected form of the value of text can
be checked with special parsing methods. Since the child element "Competence" may repeat more times, the
range of occurrences is described in a special attribute "xd:script". The model of the element above would look as
follows:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2">

 <Employee FirstName = "required string()"

 LastName = "required string()"

 EnterDate = "required date()"

 Salary = "optional decimal()" />

 <Address Street = "required string()"

 Number = "required int()"

 Town = "required string()"

 State = "required string()"

 Zip = "required int()" />

 <Competence xd:script = "occurs 1..5">

 required string()

 </Competence>

 </Employee>

</xd:def>

The names of elements and attributes of X-definition are from the namespace of X-definitions:
http://www.xdef.org/xdef/4.2

This way it is possible to distinguish between the objects of the model and the auxiliary objects of the X-definition.
The qualified names with the prefix "xd" assigned to the namespace of X-definitions are used for the auxiliary
attributes and elements. Inside the model, there are models of the attributes, models of text nodes, and models
of child elements.

The language used for description in the values of attributes and text nodes is called the X-script of X-definition,
or hereafter shortly X-script. The X-script language can be written in different parts of the X-definition source code
and it is divided into several parts according to the purpose of what is described.

Usually, you need to design a set of X-definitions to describe a variety of processed data. The set of X-definitions is
compiled into the binary code. The compiler creates the binary code saved as an instance of Java class XDPool.
The set of X-definitions used in the compilation we call the project.

The processor of X-definition runs in two different modes: validation and construction mode. In the validation
mode, the input XML data are validated and processed according to the X-definition and the X-script. The result
will be a valid XML document (representative of the model). In the construction mode, the processor creates new
XML data constructed according to the model from X-definition. The result is a constructed XML document. In
both modes, the process generates a log file containing information about error messages, warnings, etc.

Normally, the processor of X-definition returns data in the form of org.w3c.dom.Element. However, if required,
the result of the processing may be returned in the form of an instance of the Java class (an X-component). The
generation of Java code of X-component classes is described in Chapter 7 X-components.

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 3 / 104

2.1 Quantifier and Validation Section

Validate an XML document requires checking the occurrences of data items as well as checking the formal
correctness of actual data values (a data type). It is possible to specify attributes and/or text nodes of elements
and describe properties that they must fulfill. This part of the X-script we call the validation section of the
X-script.

The description of the occurrence of an item in the model we call the quantifier. Quantifiers of text nodes and
attributes holding the information about the item can be required or optional. However, the explicit form of
Quantifier is:

occurs min..max

"min" here is an integer expressing the minimum limit of occurrences of the item and "max" is the maximum limit
of occurrences. To make the X-script clearer you can write "required" instead of "occurs 1..1" and "optional"
instead of "occurs 0..1". The unlimited number of occurrences is specified by the asterisk ("*") instead of the max
parameter. E.g.:

occurs 1..*

The validation process consists of two steps:

a) Checking of occurrence according to the Quantifier.

b) Checking the correctness of a value (attributes or text nodes) according to the specified validation
method.

2.2 Model of Element

The element model is declared as the direct child element of the X-definition. From the model of an element, you
can make references to other models in different parts of the X-definition. An element model can be either the
description of the root element of the data or the description of child elements. The occurrence is taken from the
place where the model is referred to. However, the occurrence of the model of the root element is set to "occurs
1..1" when it is processed. The element models are units from which the X-definitions are composed. Within one
X-definition XML source, many element models may be described.

2.3 Model of attribute or text node (model of data value)

The description of attributes and text values requires parsing their text values. To check if the value is correct, a
validation method is performed. The result of the validation method is an object ParseResult which contains the
original text value and the parsed object. If a validation method recognizes an error, it adds to the ParseResult
object an error message. For example, if we want the data to be a whole number, we can specify the validation
method "integer()" (in fact, this represents invoking of a method that parses the text value and returns the
ParseResult object containing parsed integer number or the error message why parsing failed). If the parsing
method didn't recognize an error, the result is true. If an error is found, the result is false.

The validation method may also have a list of parameters – if, for instance, the value of a number must be greater
than or equal to 100 and less than or equal to 999, you can write "integer(100, 999)". Or, if the length of a
character string must be between 2 and 30 characters, we can write "string(2,30)". All validation methods are
described in paragraph 4.1.13 Implemented validation methods.

So, the model of a data value is described by a quantifier ("occurs 0..1" or "required" or "occurs 1..1" or
"optional") and by a validation method.

2.4 Arbitrary attribute(s) (xd:attr)

If you also want to process attributes that were not specified in a model, you can write a special attribute "xd:attr"
and further describe what should happen in this case. In the following example. In the element <a> may occur any
attribute and it must be an integer number:

<a xd:attr = "occurs 0..*; int();" />

The selection of those attributes may be described by the "match" action specified in the X-script:

X-definition 4.2 Language Description

4 / 104 Version: 4.2.2.26, Date: 2024-03-31

Only the attribute "b" is a float number. Any value of other attributes must be an integer (at least one such
attribute is required).

2.5 Arbitrary element (xd:any)

In X-definition, you can specify the model of an element with an arbitrary name. The declaration of such an
element can be written as <xd:any>. The attributes and the child nodes of this element are described the same
way as in models of an element. An example of “any" element:

<xd:any xd:script = "occurs *" />

The element from our example can have an arbitrary XML name. Attributes and child nodes are not allowed.

If the element has attributes and child nodes it can be expressed by the options "moreAttributes",
"moreElements" and "moreText":

<xd:any xd:script = "options moreAttributes, moreElements, moreText"/>

If the <xd:any> is declared as a direct child of X-definition, you must specify the attribute "xd: name". Then it is
possible to refer to such a model by the "ref" command with the X-position pointing to this name:

 <xd:def xd:root="foo" ... >
 <xd:any xd:name = "foo" ...>
 ...
 <x>
 <xd:any xd:script="ref foo"/>
 </x>
 ...

2.6 Concatenated text of element (the attributes xd:text and xd:text content)

X-definition enables one to describe individual child text nodes of a given model of the element. However, it is
possible to describe the text values that are not described by explicit models. There are two possibilities for such a
description:

a) Using the attribute xd:text - specification of this attribute processes all text nodes not processed by any model
of a text node. The text value of all such text nodes is validated by the validation section of the attribute
"xd:text".

X-definition:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2" xd:root="A">
 <A xd:text= "string(5) finally outln(getText());">

</xd:def>

Data:
<A>text1text2

Prints:
text1
text2

b) By the attribute xd:textcontent - before the event "finally" is created a string is constructed as the
concatenation of all text nodes of an element and then validated.

X-definition:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2" xd:root="A">
 <A xd:textcontent= "string(10) finally outln(getText());">

</xd:def>

Data:
<A>text1text2

Prints:
text1text2

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 5 / 104

2.7 Reference

Let us consider an XML data structure describing a family:
<Family>
 <Father GivenName = "John"
 FamilyName = "Smith"
 PersonalID = "7107130345"
 Salary = "18800" />
 <Mother GivenName = "Jane"
 FamilyName = "Smith"
 PersonalID = "7653220029"
 Salary = "19400" />
 <Son GivenName = "John"
 FamilyName = "Smith"
 PersonalID = "9211090121" />
 <Daughter GivenName = "Jane"
 FamilyName = "Smith"
 PersonalID = "9655270067" />
 <Residence Street = "Small"
 Number = "5"
 Town = "Big"
 Zip = "12300" />
</Family>

In the above example, let’s consider that the father may not exist, while the occurrence of a mother must be one
and only one. Sons and daughters may occur in an unlimited quantity, or may not occur at all.

If we want to utilize a defined structure separately, you can use a reference. In the X-script, the reference is
introduced by the keyword "ref" and followed by a specification of the X-position of the referenced model. In our
example, it is provided by the specification of the name of the referenced model. However, the position may link
to any object of X-definition. The description of the position of an object in the X-definition we call X-position.

Parts of the X-script of the referred object may be overloaded. So, for example, the X-script containing a reference
may contain the specification of its occurrence. Use the delimiting character “;“ (semicolon) to separate individual
sections of the X-script. The occurrence of an element is written as the keyword “occurs“ followed by a
specification of the minimal and the maximum number of occurrences separated by “..“ (two dots). If the
minimum value is equal to the maximum, then the occurrence may be represented by only one number.

The X-script which belongs to the element description is specified with the auxiliary attribute “xd:script“:
<Son xd:script = "occurs 0..1; ref Person" />

This way we can create aggregated X-definitions. Consider the model of the family where you have defined the
unlimited number of sons and daughters. Our data with family may or may not have a father, but must have a
mother. The model of family data may then appear as:

<Family>
 <Father xd:script = "occurs 0..1; ref Person" />
 <Mother xd:script = "occurs 1..1; ref Person" />
 <Son xd:script = "occurs 0..*; ref Person" />
 <Daughter xd:script = "occurs 0..*; ref Person " />
 <Residence xd:script = "occurs 1; ref Address" />
</Family>

<Person GivenName = "string()"
 FamilyName = "string()"
 PersonalID = "int()" />

<Address Street = "string()"
 Number = "int()"
 Town = "string()"
 Zip = "int()" />

Regarding the usage of reference to model Person, the structure expression of all family members is equal (and it
makes the source simpler and clearer).

X-definition 4.2 Language Description

6 / 104 Version: 4.2.2.26, Date: 2024-03-31

2.8 X-position

In the previous paragraph, the possibility of specifying a reference to an object in the X-definition. The reference
may link to the model in the actual X-definition or to another X-definition. The X-position must then begin with
the name of the X-definition followed by the character "#":

<xd:def name="A">
 <a>
 <x/>
 <y z="string()"/>
 <x/>

</xd:def>

<xd:def name="B">
 <b xd:script="ref A#a"/>
</xd:def>

It is also possible to link to a child part of a model. The X-position then contains the path to the referred child
node (to the second occurrence of the node "x" in the model "a" of the X-definition "A"):

<b xd:script="ref A#a/x[2]">

The first occurrence of "x" is not required to be specified as "[1]":

<b xd:script="ref A#a/x">

Has the same meaning as:

<b xd:script="ref A#a/x[1]">

The X-position of an attribute is recorded with the character "@":

<aa bb="ref A#a/y/@z">

So, the X-position starts with the optional specification of the X-definition name followed by the character "#".
The name of the referred model is required. After the specification of a model, the path to a child object may be
specified. Note that the specification of the model can be the name of the group, "xd:text" model, "xd:any"
model, etc.:

<p xd:script="ref b/y"/>
<q xd:script="ref c"/>
<r>ref d; <r>
<s att="ref d">
...
<xd:mixed xd:name="b">
 <x/>
 <y/>
<xd:mixed>
<xd:any xd:name="c"> int() </xd:any>
<xd:text xd:name="d"> date() </xd:text>

2.9 Extension and modification of the referred model

In the model, which includes a reference to the model, it is possible to add the specification of attributes and child
nodes and modify the X-script. In the example of a family above, a quantifier of each member of the family. You
can change or add also the other parts of the X-script. E.g.:

<Father xd:script = "occurs 0..1; ref Person; finally outln('Father: ' + @firstName)" />

when an element "Father" is processed, his first name will be printed

You can also add an attribute or a child node:

<Father xd:script = "occurs 0..1; ref Person;"
 Salary = "decimal" >
 <Profession> string </Profession>
</Father>

The model of "Father" is extended from the model "Person" and contains the additional attribute "Salary" and the
child element "Profession".

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 7 / 104

2.10 Event

In the X-script language of X-definitions, you can describe what should happen in different events that may occur
during the processing of data. For instance, you can describe what to do when the validation returns the value of
“True” or “False”. For each event, you can assign an event name -- “onTrue” or “onFalse”, for example. The
resulting action is described in the X-script by the keyword with the event name, followed by the action
command. An example of validation of the item “Salary“ might look like this:

Salary="optional int(1000,50000); onTrue outln('ok'); onFalse error('Salary error');"

In the above example, there are two events connected with the validation: The event where the validation
section passed without error is called onTrue; if the validation is negative the event is called onFalse. If the
validation is positive the “outln” method is invoked and if validation is negative then it is invoked the method
“error“ with the parameter “Incorrect salary“. If the event is not described, the system invokes the relevant
standard action (copy data to the output document, in the event “onTrue”, or write an error message in the log
file in the event “onFalse”).

2.11 Group

When we are describing the data structures it is sometimes necessary to describe groups of models. The
description of a group is placed either in the model element or as the direct child element of an X-definition (with
the attribute "xs:name" which enables referencing to this group from models).

In X-definition, we can define three kinds of groups: mixed groups, choice groups, and sequences. Any group may
have specified the optional attribute "xd:script". On the level of X-definition, the attribute "xd:name" is required.

2.11.1 A mixed group of nodes (xd:mixed)

Mixed groups describe lists of models that can occur as an arbitrary sequence of nodes. To describe a mixed
group, use the auxiliary element “xd:mixed“. Two nodes with the same name cannot be in the list of elements in
the mixed group (if not specified an action "matches"). Example:

<Family>
 <Father xd:script = "ref Person; occurs 0..1 "/>
 <Mother xd:script = "ref Person; occurs 1..1" />
 <xd:mixed>
 <Son xd:script = "ref Person; occurs 0..12 "/>
 <Daughter xd:script = "ref Person; occurs 0..12 "/>
 </xd:mixed>
 <Residence xd:script = "ref Address; occurs 1..1" />
</Family>

Note: In the example above, all nodes are declared as optional. However, at least one of the nodes must be
present in the data. If you want to accept also an empty group specify "optional" in the X-script:

 <xd:mixed xd:script="optional">
 ...
 </xd:mixed>

2.11.2 Selection of nodes (xd:choice)

The choice groups allow you to describe a selection of a node from the list. The names of the nodes in the list
must be unambiguous, as with mixed groups. The auxiliary element “xd:choice“ is used to define a choice group.

Example:

<Subject>
 <xd:choice>
 <Person xd:script = "ref Person; occurs 1..1"/>
 <Company xd:script = "occurs 1"
 Name = "required string ()"
 CompanyID = "required num(8)" />
 </xd:choice>
 <Residence xd:script = "ref Address; occurs 1"/>
</Subject>

Note on filters in the Choice selection

X-definition 4.2 Language Description

8 / 104 Version: 4.2.2.26, Date: 2024-03-31

Filters are designed for special cases. You can use filters in choice selection as described below, but they are not
generally useful for other functions.

Some applications need to distinguish between several models of elements, not by the name of an element, but
according to the value of an attribute. For such cases, you may describe an auxiliary action “match”. This action
contains a command that returns “true” or “false” and filters the choice items in the same way as the selection by
the element name:

<Subject>
 <xd:choice>
 <Object xd:script = "match @Type EQ 'Person'; occurs 1"
 Type = "fixed 'Person'"
 GivenName = "required string(1,30)"
 FamilyName = "required string(1,30)"
 BirthDate = "required date" />

 <Object xd:script = "match @Type EQ 'Company'; occurs 1"
 Type = "fixed 'Company'"
 Name = "required string"
 CompanyID = "required num(8)" />
 </xd:choice>
 <Residence xd:script = "ref Address; occurs 1..1"/>
</Subject>

Note the result of the action “match” here is a Boolean value that evaluates the attributes of the current element.
If there is a specification of the attribute that is not followed by a relational operator then the value is true if the
attribute with the specified attribute exists (see 4.1.2.7 boolean (Boolean values)). So, we could also write the
previous example as:

<Subject>
 <xd:choice>
 <Object xd:script = "match @BirthDate; occurs 1..1"
 GivenName = "required string (1,30)"
 FamilyName = "required string (1,30)"
 BirthDate = "required date"/>

 <Object xd:script = "match @CompanyID; occurs 1..1"
 Name = "required string ()"
 CompanyID = "required num(8)" />
 </xd:choice>
 <Residence xd:script = "ref Address; occurs 1..1"/>
</Subject>

2.11.3 A sequence of nodes (xd:sequence)

The sequence group describes a group of elements that must occur in the data in the given order. The sequence
group behaves the same way as the specification of child nodes of an element. The nodes can be specified
repeatedly, and the names are not required to be unique. The sequence group is specified by the auxiliary
element "xd:sequence":

<Object>
 <xd:sequence>
 <Person xd:script = "occurs 1" Name = "required string()" />
 <Company xd:script = "occurs 1" Title = "required string()" />
 </xd:sequence>
</Object>

2.11.4 Group as a model and the reference to a group

A group may be declared on the level of X-definition (as the direct child of "xd:def"). Then it is possible to use a
reference to a group from a model. In this case, the attribute "xd:name" must be specified. The name is used then
as the reference to the model of a group in the attribute X-script.

Example:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2">

 <Family>
 <xd:mixed xd:script="ref FamilyGroup" />
 </Family>

 <xd:mixed xd:name = "FamilyGroup">
 <Father ...

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 9 / 104

 <Mother ...
 <Son ...
 <Daughter ...
 </xd:mixed>
</xd:def>

2.12 BNF grammar in X-definition

The BNF grammar is described with extended Backus-Naur form (EBNF). The EBNF describes the formal syntax of
a string by the set of production rules.

2.12.1 BNF production rule

Each production rule (hereafter "rule") has a name. The name of a rule must start with a letter or the character '_'
(underscore character). After the first character may follow a sequence of letters, underscores, and decimal digits.
The name of a rule is on the left side of "::=". On the right side of "::=" follows a formula describing the rule. Each
rule describes one symbol of the grammar in the form:

 ruleName ::= BNF expression

2.12.2 BNF terminal symbols

Terminal symbols (character sequences) are described by the following formulas:

#xN is the character expressed as a numeric UTF-16 (the code) N. The N is expressed as
a hexadecimal number. Leading zeroes are ignored.

"string" or 'string' is the sequence of characters in quotation marks or apostrophes

2.12.3 Case insensitive symbols

Case-insensitive symbols (character sequences) are described by the following formulas:

#xN% character with numeric UTF-16 (the code) N. The N is expressed as a hexadecimal
number. Leading zeroes are ignored.

"string"% or 'string'% sequence of characters in quotation marks or apostrophes.

2.12.4 BNF set of characters

[a-zA-Z] or [#xN-#xN] the record a-b represents the set of characters from the closed interval <a,b>

[abc] or [#xN#xN#xN] list of characters

[^a-z] or [^#xN-#xN] all characters out of the specified interval

[^abc] or [^#xN#xN#xN] all out of the list

Note that "[" you must specify as #135, and also the characters below the numeric value of space you must declare

as a numeric value (e.g. CR as #10, LF as #13, etc.), and the "-" must be specified as the first character of the list.

2.12.5 BNF quantifier (repetition of a rule)

The quantifiers allow you to describe the allowed number of consecutive string occurrences corresponding to the
rule to which the quantifier relates:

A? rule A is optional

A+ rule A may occur once or more times

A* rule A may not occur or occur more times

A{n} rule A must occur exactly n times

A{m, n} rule A may occur at minimum m-times and maximum n-times

A{m,} rule A may occur minimum m-times or more times

X-definition 4.2 Language Description

10 / 104 Version: 4.2.2.26, Date: 2024-03-31

2.12.6 BNF expression

The above constructs can be presented in compound rules describing non-terminal symbols. Expressions on the
right side may contain the elements or links to another rule using the rule name and can be composed of the
following components. Any part of the entry may be in brackets:

A – B restriction, a character string that meets rule A but also doesn't meet rule B. The
restriction operation has a higher priority than the concatenation operation or
selection operation. So:

 A - B C - D is equivalent to (A - B) (C – D)

 or

 A - B | C - D is equivalent to (A - B) | (C - D)

A B concatenation. The character sequence meets rule A followed by characters that
meet rule B. The sequence has higher priority than all lists. So:

 A B , C D is equivalent to (A B) , (C D)

A | B selection. The sequence of characters meets rule A or rule B.

2.12.7 Comments and whitespaces

Anywhere between terminal symbols and rule names may be any sequence of spaces, new lines and tabulators,
and comments.

The comment is a text between "/*" and "*/". Nesting of comments is not allowed.

2.12.8 Implemented predefined rules

The following implemented methods provide parsing of the actual source

$anyChar parses any character (returns true if a character exists and false if the parser reaches the
end of the parsed string).

$base64 parses base64 format. Parsed text is put into the internal stack as an array of bytes.

$boolean parses "true" or "false". Parsed text is put to the internal stack as a Boolean value.

$date parses date according to ISO specification. Parsed text is put to the internal stack as an
org.xdef.sys.SDatetime value.

$datetime parses date and time according to ISO specification (argument may be a mask). Parsed
text is put to the internal stack as an org.xdef.sys.SDatetime value.

$datetime(mask) parses the date and time according to the mask in the argument. Parsed text is put to the
internal stack as an org.xdef.sys.SDatetime value.

$day parses day according to ISO specification. Parsed text is put to the internal stack as an
org.xdef.sys.SDatetime value.

$digit parses decimal digit.

$duration parses duration according to ISO specification. Parsed text is put to the internal stack as
an org.xdef.sys.SDuration value.

$error(s) writes the error message with the parameter to the reporter and returns that the rule
fails.

$eos checks if the end of the source was reached.

$find(s) skips characters from the actual source position until it reaches a string from the
argument s (it fails if the string from the argument was not found)

$findOneOfChars(s) skips the position from the actual position to a character from the string from the
argument (returns true if the character was found and false if not)

$float parses float number without sign (with a decimal point and/or exponent). Parsed text is
put to the internal stack as a java.lang.Double value.

$hexData parses hexadecimal format. Parsed text is put into the internal stack as an array of bytes.

$integer parses integer number without sign (sequence of digits). Parsed text is put to the internal
stack as a java.lang.Long value.

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 11 / 104

$JavaName parses Java name. Parsed text is put to the internal stack as a java.lang.String value.

$JavaQName parses Java qualified name (may contain dots). Parsed text is put to the internal stack as a
java.lang.String value.

$letter parses any letter in any language

$letterOrDigit parses letter or digit

$lowercaseLetter parses lowercase letter

$month parses month according to ISO specification. Parsed text is put to the internal stack as an
org.xdef.sys.SDatetime value.

$monthDay parses month and day according to ISO specifications. Parsed text is put to the internal
stack as an org.xdef.sys.SDatetime value.

$ncName parses NCName according to W3C specification {see Namespaces in XML 1.1 (Second
Edition) (w3.org)}. Parsed text is put to the internal stack as a java.lang.String value.

$nmToken parses NMTOKEN according to W3C specification. Parsed text is put to the internal stack
as a java.lang.String value.

$time parses time according to ISO specifications. Parsed text is put to the internal stack as an
org.xdef.sys.SDatetime value.

$skipToNextLine skips to the next line of parsed data or the end of data.

$stop parsing is stopped at the position of the rule.

$stop(s) parsing is stopped at the position of the rule and the argument is stored in the internal
stack.

$UTFChar parses any legal UTF character

$uppercaseLetter parses a capital letter.

$xmlChar parses an XML character according to W3C specification

$xmlName parses an XML name according to W3C specifications. Parsed text is put to the internal
stack as a java.lang.String value.

$xmlNameExtchar parses the following characters of XML name according to W3C specification

$xmlNamestartchar parses the first character of XML name according to W3C specification

$year parses a year according to ISO specification. Parsed text is put to the internal stack as an
org.xdef.sys.SDatetime value.

$yearMonth parses a year and month according to ISO specifications. Parsed text is put to the internal
stack as an org.xdef.sys.SDatetime value.

$whitespace parses whitespace according to W3C specification

Note the "rule" $error doesn’t parse any actual text. However, it forces the parsing process to fail in the actual
position.

2.12.9 Implemented methods for handling the internal stack

The following methods (nothing is parsed) are implemented to handle the internal stack:

$clear clears the internal stack

$info puts to the internal stack the information containing the name of the
actual rule and source position (line, column, etc.)

$info(params) puts to the internal stack the information containing the name of the
actual rule and parameter list in parenthesis and source position (line,
column, etc.)

$pop removes the item from the top of the internal stack

$push puts to the internal stack the text parsed by the actual rule.

$push(arg) puts a value from the argument to the top of the internal stack (the parameter can be
specified in the declaration section). If no argument is specified it is pushed to the
internal stack of the parsed text.

$rule puts to the internal stack the name of the actual rule. After the rule name are positions
where parsing of the rule started parsing and where parsing ended (separated by the
space).

X-definition 4.2 Language Description

12 / 104 Version: 4.2.2.26, Date: 2024-03-31

2.12.10 Declaration of externally defined method

In the BNF grammar of X-definition, it is possible to apply an external rule, which is implemented in a Java class.
The name of the external rule in BNF starts with the character "$" (dollar) after which follows the specification of
an external Java method.

The external rules are declared in the command starting with "%define". This keyword must be followed by the
name of the external rule, the colon character (":"), and the specification of a Java method. If the external method
has parameters, the list of values separated by a comma is specified in brackets. The values of parameters may be
only an integer, float, String, Datetime, or Duration.

The specification of all external or implemented methods must be described at the beginning (before the
description of BNF rules).

Example:

%define $rule1: $myproject.BNFPravidla.pravidlo1
%define $rule2: $myproject.BNFPravidla.pravidlo(123, "abc")
%define $rule3: $myproject.BNFPravidla.pravidlo(-1)
%define $operator: $push("op")
%define $date: $datetime("dd.MM.yyyy")

Rule1 ::= $rule1 | $rule2 | $rule3
...

2.12.11 BNF declaration

The simplest way to create an object with a BNF grammar is to create it as an X-script variable:

 BNFGrammar x = new BNFGrammar(string with BNF grammar...);

Since the BNF grammar may be quite big, it can be also recorded in the auxiliary element (it creates a declared
variable similar way as xd:declaration):

<xd:BNFGrammar name = "x" scope = "global" >
 Text with BNF grammar ...
</xd:BNFGrammar>

From the given grammar you can create a new grammar extended by other rules by using the attribute "extends".
E.g.:

<xd:BNFGrammar name = "y" extends = "x" , scope="local">
 Rules extending grammar x ...
</xd:BNFGrammar>

It is also possible to create extended grammar with a constructor:

 BNFGrammar g = new BNFGrammar("numbers ::= [0-9]+ (',' [0-9]+)*");
 …
 /* g1 is g extended with the rule „hexa“ */
 BNFGrammar g1 = new BNFGrammar("hexa ::= ('X' | 'x') [0-9A-F]+", g);

The rule from a grammar can be obtained by the method "rule" on a BNFGrammar. E.g.:

 BNFRule x = g1.rule("hexa");

You can use a BNF rule to parse the text value of an attribute or a text node:

 <elem a="optional x">
 required g1.rule("numbers");
 </elem>

The attribute "a" of the element <elem> must meet the rule "hexa" from the grammar g1 and the value of the
text node of this element must meet the rule "numbers" from g.

To check if a string meets a BNF rule you can use the method "check". The result is true if the string meets the rule
and false if not:

 BNFGramar g = new BNFGramar("A ::= [0-9]+(',' [0-9]+)*");
 BNFRule r = g.rule("A");
 String s = "123,4,5";
 boolean x = r.check(s);

the variable "x" will be true.

You can also declare the validation method based on the BNFrule as a validation method:

 <xd:declaration>

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 13 / 104

 BNFGramar g = new BNFGramar("A ::= [0-9]+(',' [0-9]+)*");
 type numbers g.rule("A");
 </xd:declaration>
 ...

You can try BNF declaration on the web at: https://xdef.syntea.cz/tutorial/examples/BNF.html.

2.13 Macro (xd:macro)

Macros are used to simplify and help clarify the X-script for the easier overall maintenance of the source of the
X-script in X-definitions. Macro specifies a value (a character string), and has an assigned name in the attribute
"name".

The macro is declared using the element <xd:macro>, which must be placed on the level of the direct descendants
of the X-definition. The name of the macro is written to the attribute "name" (or "xd: name"), which must be the
unique name within an X-definition (i.e., there cannot be two macros with the same name). The value of the
macro is recorded as a text value of the element xd:macro. A reference to a macro ("call" of a macro) is written in
the X-script ax a "${name}". All references to the macro wherever they occur in an X-script are replaced with the
value of the referred macro.

Macros can also have parameters (each parameter has a name). The value of the declared parameter must be set
in the macro declaration using attributes that have the name of the parameter. A reference to the parameter of a
macro in the body of the macro is written as "#{paramName}". In the macro reference, the parameter is specified
in parentheses, and each parameter is referred to with the parameter name. If a parameter is not specified in the
macro reference the default value from the macro declaration will be set. Example of macro reference with
parameters:

${macroName(parName='value′)}

 Note: Single or double quotes inside a parameter value must be escaped using ‘ \ ’

All macros are processed before the X-script is compiled (this is executed by the macro preprocessor). All macro
references are replaced with the expansions of a macro. This is done until a macro reference exists in the
expanded text, i.e. macro references may be nested. Also, the macro declaration may be a reference to another
macro. The number of nested macro calls is limited to a fixed value of 100 (this avoids an endless loop of nested
macros and if this limit is exceeded, an error is reported). Macro reference can be recorded anywhere in the
X-script, even inside the values of constants, keywords, or identifiers. For this reason, you should be aware of the
possibility of inadvertent call macros e.g. inside the declaration of character strings. If you do not want an entry to
be interpreted as a macro reference, it is necessary to replace the character "$" by writing "\u0024". Example:

outln("This is not a macro reference: \u0024{name}");

If the X-script contains a reference to the macro from another X-definition, the name must be introduced by the
name of the referred X-definition followed by the "#" symbol (normally the scope of macro validity is limited to
the X-definition where it was declared):

outln("However, this is the macro reference: ${name#name}");

The result of the macro processing is in the X-script copied including spaces and newlines. So, with a macro, it is
possible to insert new rows into the models of attributes.

Examples of a macro declaration:

<xd:macro name = "name">string(2,30)</xd:macro>
<xd:macro name="colors" p1="white" p2="black">enum('#{p1}', '#{p2}')</xd:macro>
<xd:macro name="familyName">required ${name}</xd:macro>
<xd:macro name="greeting" p="′Hello′">outln(#{p});<xd:macro>
<xd:macro name="text">outln('Macro call has the form: \u0024{text} ');"

Examples of macro reference:

<Person firstName="optional ${name}" lastName="${familyName}"/>
<Cover title="required ${colors(p2=′red′)}"/>
<Description print="optional ${colours)" />
<Greeting xd:script="finally ${greeting}">
<Greeting xd:script="finally ${ greeting p=’\'Hi’\'}" />
<t xd:script="finally ${text}"></t>

The results after macro expansion:

<Person firstName = "optional string(2,30)" lastName = "required string(2,30)" />

https://xdef.syntea.cz/tutorial/examples/BNF.html

X-definition 4.2 Language Description

14 / 104 Version: 4.2.2.26, Date: 2024-03-31

<Cover print="required enum(′white′,′red′)"/>
<Description print="optional enum(′white′,′black′)"/>
<Greeting xd:script="finally outln(′Hello′);"/>
<Greeting xd:script="finally outln(′Hi′);"/>
<t xd:script = "finally outln(′Macro call has the form: ${text}'); "/>

2.14 X-definition Header

X-definition is an XML element named "xd:def" where "xd" is the prefix of the namespace
"http://www.xdef.org/xdef/4.2" (of course you can use another prefix; however, in this text, we use the prefix
"xd"). The list of attributes of the X-definition element we call the X-definition header. There are some obligatory
attributes of the header and some optional attributes. The header contains the information needed for the
processing of an X-definition.

2.14.1 xd:name

One X-definition in the project may be unnamed, and the other X-definitions compiled in a project (XDPool) must
have an unambiguous name. The name of the X-definition is specified in the X-definition header in the attribute
"xd:name" or just "name" and it must be in the form of a valid XML name.

2.14.2 xd:root

Because a single X-definition may include several element models, it is necessary to specify which model might
represent the description of the root element of the processed data. Therefore, it is necessary to specify the
names of those models used as root elements in the attribute "xd:root" or just "root". If other elements might be
root elements, the names of the corresponding acceptable models are separated by the character "|". You can
describe several models that can be accepted as the root.

In version 4.1 and above it is possible to refer from the xd:root attribute not only to a model of an element but
also to an xd:choice group. Example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" xd:root = "x">
 <xd:choice name = "x">
 <A/>

 </xd:choice>
</xd:def>

Note that it is also possible to use also “match” section in the script of the element:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" xd:root = "x">
 <xd:choice name = "x">
 <A xd:script= "match @a == '1'" a="int()">
 <A xd:script= "match @a == '2'" a="int()"> <C/>
 </xd:choice>
</xd:def>

2.14.3 X-script options in X-definition header

The X-script in the header of the X-definition may contain the actions "init", "onIllegalRoot", "onXmlError" and the
specification of options (see 4.1.22 Options). Here are the options you can specify:

noSetAttrCase setAttrLowerCase setAttrUpperCase

noSetTextCase setTextLowerCase setTextUpperCase

ignoreAttrWhiteSpaces preserveAttrWhiteSpaces acceptEmptyAttributes

ignoreTextWhiteSpaces preserveTextWhiteSpaces

noTrimAttr trimAttr

noTrimText trimText

ignoreComments preserveComments

ignoreEmptyAttributes preserveEmptyAttributes

If an option is not specified the default values are:

noSetAttrCase

noSetTextCase

preserveAttrWhiteSpaces

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 15 / 104

preserveTextWhiteSpaces

trimAttr

trimText

ignoreComments

preserveEmptyAttributes

2.14.4 Specification of meta namespace

For the X-definition itself to be described, it is possible to specify the attribute "xd:metaNamespace" from the
X-definition namespace, which specifies the namespace, which will be interpreted as the namespace for
X-definition objects. Also, it is possible to refer to these objects.

Example:

<meta:def xmlns:meta ="mynamespace"
 xmlns:xd ="http://www.xdef.org/xdef/4.2"
 name ="dummy"
 xd:metaNamespace ="mynamespace" >

 <xd:def xd:name ="required string()">
 <meta:any meta:script="optional; options moreAttributes, moreElements, moreText" />
 </xd:def>
</meta:def>

2.14.5 xd:include

The "xd:include" attribute contains the list of URL items or pathnames of files with the collections of X-definitions
that are imported to the project. The separator of the entries in the list is the comma (","). The item may be
expressed as the relative path from the actual position of the X-definition. In the item, it is possible to use
wildcards "*" or "?" (i.e. "*.xdef" meets all files with the extension "xdef". If an item does not refer to a local
filesystem the wildcard is not allowed.

Example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2"
 xd:name = "foo"
 xd:include = "http://www.syntea.cz/project/*.xdef">

2.14.6 xd:importLocal

This attribute contains a comma-separated list of names of X-definitions from which are “visible” for the local
declarations from those X-definitions. The X-definition without a name is written as “#”. The order defines how
the X-declarations are searched. Example:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2" xd:name="A" xd:root="X" xd:importLocal="B, #">
 <X a="mytype()" b="_type()"/>
</xd:def>
<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" xd:name = "B">
 <xd:declaration scope="local"> type mytype string(); </xd:declaration>
</xd:def>
<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <xd:declaration scope="local"> type _type int(); </xd:declaration>
</xd:def>

The type of attribute "a" in the element "X" will be "string" and the type of attribute "b" will be "int".

2.14.7 Implementation information

If a name of an attribute in the X-definition header starts with the prefix "impl-", then the value of such is stored
in the compiled pool and it is available in the X-script by the method getImplProperty(name) where the name is
part of the name of the attribute which follows the prefix "impl-".

Example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" root = "A" impl-version = "001.002">
 <A xd:script="init outln('The version of this project is: ' + getImplProperty('version'))"/>
</xd:def>

The processor writes to standard output:

The version of this project is: 001.002

X-definition 4.2 Language Description

16 / 104 Version: 4.2.2.26, Date: 2024-03-31

2.15 Declaration of variables, methods, and data types (xd:declaration)

The variables, methods, and data types may be declared in the element "<xd:declaration>" that is a direct
descendant of an X-definition. To specify the scope of accessibility (or say, " visibility") of declared objects is
possible using the attribute "xd:scope". If the value is "global", the declared variables, methods, and data types
can be accessed from any point of an X-script in an X-definition. However, if the given attribute is
xd:scope=“local”, the declared variables, methods, and data types are "visible" only from the X-definition in which
they were declared or from X-definitions where is written the attribute “xd:importLocal” with the name of this X-
definition. The attribute "scope" is optional and the default value is "local". For a detailed description of the
declaration section, see paragraphs 4.1.6.1 Declared variables, 4.1.6.2 Declared methods, and 4.1.6.3 Declared
data type.

2.16 Structure of X-definition

X-definition is an element that starts with the X-definition header and contains child elements, which are a
mixture of:

- macros
- element models
- group models
- attribute models
- arbitrary element models
- text models
- declarations of variables, methods, and types
- BNF grammar specifications
- X-component descriptions (not described yet, will be described later)
- JSON model

Any above elements are optional, any number of them. All of them have a unique name within the X-definition,
and their sequence is arbitrary.

2.17 Collection of X-definitions

Larger projects may use many X-definitions. In such a case, we can create a collection of X-definitions. The
collection of definitions – “xd:collection“ -- is the parent node into which you can insert X-definitions as child
nodes, or you can specify the path to the source where the X-definitions are located.

In the following example, we separated the description of the model "Person" and "Address" into two different
X-definitions named "CommonObjects" and "Family". Both X-definitions have been recorded in a single XML
document as a collection:

<xd:collection xmlns:xd = "http://www.xdef.org/xdef/4.2">

 <!-- X-definition with model "Family" -->
 <xd:def xd:name = "Family" xd:root = "Family" >
 <Family>
 <Father xd:script = "ref CommonObjects#Person; occurs 0..1" />
 <Mother xd:script = "ref CommonObjects#Person; occurs 1" />
 <xd:mixed>
 <Son xd:script = "ref CommonObjects#Person; occurs 0..15" />
 <Daughter xd:script = "ref CommonObjects#Person; occurs 0..15" />
 </xd:mixed>
 <Residence xd:script = "ref CommonObjects#Address; occurs 1" />
 </Family>
 </xd:def>

 <!-- X-definition with models Person and Address -->
 <xd:def xd:name = "CommonObjects" >
 <Person GivenName = "required string (2,30)"
 FamilyName = "required string (2,30)"
 BirthDate = "required date"
 Salary = "optional int(1000,9999); onFalse error('Incorrect salary')" />
 <Address Street = "optional string (2,36)"
 Number = "required string (1,6)"
 Town = "required string (2,36)"
 Zip = "required int(10000,99999)" />

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 17 / 104

 </xd:def>
</xd:collection>

The collection may only have the optional attribute xd:include. E.g.:

<!-- the source codes of X-definitions are imported from files specified in "xd:include" -->
<xd:collection xmlns:xd = "http://www.xdef.org/xdef/4.2"
 xd:include = "C:/data/xdefA.xdef, C:/common/*.xdef"/>

X-definition 4.2 Language Description

18 / 104 Version: 4.2.2.26, Date: 2024-03-31

3 Language localization of XML (xd:lexicon)
You can describe the names of elements and names for different languages in the element xd:lexicon. Each line in
the text of this element describes an X-position if the node and separated by equal sing (“=”) follows the name in
a language. The language name is specified by the attribute xd:language of the element xd:lexicon. Example:

Let’s have the following XML document:

<Contract ID = "12345">
 <Date>2019-05-12</Date>
 <Client name = "John Smith" PersonalId = "0987654321"/>
</Contract>

X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" xd:root = "Contract" xd:name = “Example”>
 <Contract ID="int()">
 <Date>date()</Date>
 <Client name="string()" PersonalId="num()"/>
 </Contract>
</xd:def>

Lexicon for the Russian language:

<xd:lexicon xmlns:xd="http://www.xdef.org/xdef/4.2" language="rus" >
 Example#Contract = контракт
 Example#Contract/@ID = ид
 Example#Contract/Date = Дата
 Example#Contract/Client = клиент
 Example#Contract/Client/@Name = имя
 Example#Contract/Client/@PersonalID = Персонномер
</xd:lexicon>

Then the version in the Russian language will be:

<контракт ид = "12345">
 <Дата>2019-05-12</Дата >
 <клиент имя = "John Smith" Персонномер = "098765432" />
</контракт>

You can define a language where the names are the same as in the X-definition by the attribute “xd:default”. E.g.
English:

<xd:lexicon xmlns:xd = "http://www.xdef.org/xdef/4.2" language = "eng" xd:default = "true" >

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 19 / 104

4 X-script of X-definition
The X-script of X-definition (hereafter the X-script) is the language used for the description of properties of data
objects (both models and their child nodes). The X-script is written either as a value of the auxiliary attribute
"xd:script" as a value of the attributes of models or as a description of a text node. The attribute xd:script may
also be specified in the X-definition header, where it may describe several properties of the X-definition. With the
X‑script we describe the properties of data and the actions which are invoked in different events when an
X-definition is processed.

The X-script has a free format (the syntax tokens of the X-script may be separated by an unlimited number of
white spaces). There are several parts of the X-script (we are speaking about the sections of the X-script). The
parts of the X-script may be specified in an arbitrary order. The separator of different sections of the X-script is the
character “;“ (semicolon). In the case where it is not necessary concerning the syntax of the X-script, the

semicolon may be omitted (at the end of the X-script, after a compound statement in curly brackets). Generally,
there are the following sections of the X-script:

1. Validation section: The validation formula of the X-script is different for the description of text values
and elements.

a. The text values are described by the specification of the occurrence (required, optional, etc.)
followed by the specification of the validation of the text value. The second part here may be
omitted (then it is considered as any kind of string, including an empty one).

b. The occurrence of an element is specified by two numbers the interval of the minimal number of
occurrences and the maximal number.

Note that X-definition does not use the concept "type of element" which is used in XML schema (XSD). The
type of text value of an element is described in the X-definition by the element text value.

2. Sections describing actions associated with events: Specification of action defines what to do in
different events (states) during the processing of objects. Each specification of action starts with the
keyword, which is the name of an event, followed by the command (it may be also a compound
command in curly brackets) which should be invoked in the relevant event. The names of events are
found in Table 5 - Events. You can specify more actions in a single X-script.

3. Options: The specification of options starts with the keyword “options” followed by the list of option
names separated by a comma. See Table 46 - Options. The X-script can only specify one option list.

4. References: With reference, we specify the link to the model of an element. This model must exist in the
X-definition. Within one X-script you can only refer to one model. With references, you can also simplify
and maintain designed X-definitions more easily. If you refer to the model “address” in the example
below, you describe it once, and if you make changes to your model “address” it is changed automatically
in objects where there is a reference.

5. Declaration of variables of an element: this section declares variables connected with the instance of an
element. The section starts with the keyword "var". This section must be specified before the other
sections.

Within the X-script you can insert comments, (similar to C or Java), between the character sequence "/*" and "*/".

Warning: Line comments used in C or Java that start with the sequence “//” are not allowed because the new line
characters (when used in attributes) are replaced by the XML processor with single-space characters.

The sequence of the above-mentioned parts of the X-script is arbitrary except for the declaration of variables,
which must be specified before other sections.

The X-script of elements is recorded in the auxiliary attribute xd:script.

<Family>
 <Father xd:script = "occurs 0..1"/>
 <Mother xd:script = "occurs 1"/>
 <Child xd:script = "occurs 0.."/>
</Family>

The X-script describing a text value is written as the text in the appropriate place of a given element:

<Text>
 required string ()
</Text>

X-definition 4.2 Language Description

20 / 104 Version: 4.2.2.26, Date: 2024-03-31

Example of an X-script with a reference:

 <Stay xd:script = "occurs 1; ref Address"/>

4.1.1 Identifiers in X-script

In the X-script identifiers are used for names of X-definitions, methods, variables, events, keywords, etc. The
identifier in the X-script corresponds to the form of the XML QName. Moreover, for names of methods, variables,
or constants it is also possible to use the character “$" (dollar) in the identifier. Capital and small letters are
distinguished. Letters of the national alphabet are permitted. The names of XML elements and attributes, of
course, comply with the rules for XML objects (e.g. they may contain the characters ".", "-", ":", IE. dot, dash, and
colon). We do not recommend the use of identifiers with periods, colons, and the character "-" (even when it is
not disabled, ambiguous entries may occur).

4.1.2 Types of values of variables and expressions in X-script

In the X-script commands and variables with values of several types can occur. Value types that can occur in the
X-script are as follows:

4.1.2.1 int (integer numbers)

Values are in the range:

 -9223372036854775808 <= n <= 9223372036854775807

Note that the int type in the X-script corresponds to the long type in Java, C #, C, etc. (it is represented as a 64-bit
integer). Therefore, the long type is not implemented in the X-script.

Whole numbers in X-script commands can be written either as a decimal number or as a hexadecimal number.
Hexadecimal numbers must begin with the characters "0x" or "0x" followed by a sequence of hexadecimal digits
(i.e., the letters 'a' to 'f' or 'A' to 'F' or digits '0' to '9').

The special predefined constants ($MAXINT, $MININT) are described in Table 3 - Built-in variables and constants.

To make an entry easy to read it is possible to insert between the digits the characters "_" (underscore), which
does not affect the value of a number. For example, 123_456_789 is equivalent to 123456789.

To convert a number to a character string, it is possible to use the method "toString(mask)" where the argument
is the output format mask, which represents a string of characters that contains control characters, which have
the following meaning:

0 digits, leading zeros are replaced by a space

digits, leading zeros are appended to the output

. creates an output with a decimal point (period)

' prefix and suffix of the string that contains control characters, which are to be interpreted as characters fill
(i.e., the character string is enclosed in single quotation marks).

Other characters make up the padding that is copied to the output string.

Example:

 "012" matches the pattern "# #0".

4.1.2.2 float (floating-point numbers)

Values are in the range:

 -1.7976931348623157E308 <= x <= -4.9E-324

or 0.0 or

 from 4.9 E-324 to 1.7976931348623157E308

The specification of numbers with a floating-point corresponds to the commonly used format of floating-point
numbers, including the exponent. The decimal point is always a dot (regardless of local or national conventions).
The exponent can be written as the capital or the small letter "e". To convert a number to a character string, it is
possible to use the method "toString (mask)", where the argument is the string with an output format mask, i.e., a
string with control characters, which have the following meaning:

0 digits, leading zeros are replaced by a space

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 21 / 104

digits, leading zeros are appended to the output
E separates mantissa and exponent. Creates output with a decimal point (period)
or the prefix and suffix of the string that contains control characters but is to be interpreted as padding (i.e.,
the generic character string enclosed in single quotation marks or apostrophes)

Other characters make up the padding that is copied to the output string.

The special predefined constants ($MINFLOAT, $MAXFLOAT, $PI, $E, $POSITIVEINFINITY, $NEGATIVEINFINITY, and
$NaN) are described in Table 3 - Built-in variables and constants.

Examples:

 "012.00" matches the pattern "##0.00".
 "654.32" matches the pattern "##0.00".
 "012.00" matches the pattern "##0.00".
 "4" matches the pattern "# #0".

4.1.2.3 Decimal (decimal numbers)

The decimal numbers in the X-script are implemented as Java objects java.math.BigDecimal. This number type
starts with the character "0d" followed by an integer number or number with a floating point. In writing it is
possible to use an underscore, e.g. "0d123__456_890_999_0.00_333". Values of the type Decimal are only
possible to compare in expressions. Other operations must be carried out using the appropriate methods.

4.1.2.4 BigInteger (any integer number)

The BigInteger numbers in the X-script are implemented as java objects java.math.BigInteger. This number type
starts with the character "0i" followed by an integer number. In writing it is possible to use an underscore, e.g.
"0i123__456_890_999_000_333". Values of the type BigInteger are only possible to compare in expressions.
Other operations must be carried out using the appropriate methods.

4.1.2.5 String (character strings)

Character strings can contain any characters that are acceptable in XML documents. Strings literals are written
with apostrophes, or quotation marks around them (because the values of XML attributes may also be inside
quotation marks or apostrophes, you should use another character inside an attribute, that is, if the attribute
value is enclosed in quotation marks, inserting character values between apostrophes, and vice versa). If a
character occurs within the string, which is a string (i.e. apostrophe or quotation marks), enter the backslash
character \ before the apostrophe '. The occurrence of the character '\' is written doubled as '\\'. Using the
character '\' can also describe any Unicode character 16 writing "\uxxxx" where x is a hexadecimal digit (e.g.
\u0022 is quote character and \u0027 is apostrophe). You can also write some special characters by using the
following escape characters:

\n end of line (linefeed, LF, \u000a)
\r return to the beginning of the lines-carriage return (CR, \u000d)
\t horizontal tab (HT, \u0009)
\f form feed (FF, \u000c)
\b backspace (BS, \u0008)
\\ backslash ("\", \u005c)

Warning: If the text of X-script is specified as the attribute value, the XML processor replaces all occurrences of
the new line with space. Therefore, you must write into the X-script in attributes to explicitly specify character
strings new lines such as "\n". Additionally, you should avoid accidentally calling a macro. The occurrence of the
pair of characters "$ {" anywhere in the X-script is interpreted as the beginning of a macro reference, and
therefore it should be inside the character strings. In this case, write the initial character "$" for this pair of
characters by the escape sequence such as "\u0024".

4.1.2.6 Datetime (date and time values)

The value represents a date and time. Contain year, month, and day. It can be written to the constructor as a
string of characters according to ISO8601 or can be converted to the internal shape by using the implemented
method "parseDate": e.g. parse date ('2004-08-10T13:59:05'). The recommended format is according to ISO8601,
otherwise, the function "parseDate" must be given a string as the second parameter with a mask, specifying the
format of the registration. Similarly, you can use the mask as a parameter for the method "toString", e.g.
date.toString("d. m. yyyy"). The mask is a string of characters that contains control characters used for the

X-definition 4.2 Language Description

22 / 104 Version: 4.2.2.26, Date: 2024-03-31

processing of input data or creating a printable string from the data object (formatting). Other characters in the
mask are understood as a character constant (literal), IE. a copy is required at the input or output will be copied. If
the literal contains letters, you must write it between apostrophes into the mask (if the apostrophe should be part
of the literal, then that is doubled). If there is an escaped character, then when the formatting is completed the
number of leading zeros and when parsing the processor reads the specified number of digits. For some control
characters, there is a different meaning (see control characters ' a ', ' E ', ' G ', 'M ', ' y ', ' Z ', ' z '). Also, the format
may contain the following sections:

a. Initialization section. The initialization section is enclosed in curly braces "{" and "}".

Describes the country or language-dependent conventions (location) and may set the default values of a
date or time. Description of the default values requires that each value is preceded by an escape
character. In the initialization sections, only the following escape characters: d, M, y, H, m, s, S, z, Z are
allowed. The zone name is specified after the character name "z" in parentheses. For example:
"{d1M1y2005H16m0s0z(CET)}" sets the default date and time values to 1-1-2005T16:00:00 CET. In the
parentheses, it is possible to write the full name of the place, e.g. "Europe/Prague".

The description of the language-dependent or local conventions is given by the letter "L" followed by a
language ID in parentheses and, if appropriate, a country may also be specified after the comma. After
the next comma, the variant of local conventions may also be specified. L (*) sets the location according
to the running operating system. The language and country identifiers are two-letter and must conform
to the standards ISO639 and ISO3166 (the language in lowercase letters and the country in uppercase
letters). E.g. "L(en)" defines English. The default value is set to L(en, US). E.g. the "L(es, ES,
Traditional_WIN) sets Spanish, Spain, traditional conventions.

b. Variant section. For parsing, it is advantageous to allow more variations of file formats. The different
variants are separated by ‘|’. Each variant has its initialization part.

Example: Mask d/M/yyyy|yyyy-M-d|{L’en’d MMM yyyy} allows you to read the data in the following
formats: 1/3/1999 or 1999-0-1 or 1 Mar 1999. The variant has significance for parsing. In the process of
output formatting, only the first option is used.

c. Optional section. A description of the optional section is enclosed in square brackets "[" and "]". The
section specified as optional has meaning only when parsing and relevant data of the input data may be
missing. Example: Mask for HH: mm [: ss] corresponds to the 13:31 or 13:31:05 data. Optional sections
can be nested (for example. HH: mm [: ss [from]]). The optional section has meaning when parsing. When
creating the string it is ignored.

d. Variant character. If the character sequence enclosed in apostrophes follows the character "?" in the
mask then the parsing engine accepts a character equal to a character from the enclosed sequence (e.g.
d?/.’m?/.’yyyy allows both forms of date, either "1/3/1999" or "1.3.19990").

e. Control characters of the mask. The parser and formatter of date values according to the mask are listed
in the following table:

Table 1 - Control characters in the date mask

Character Type Description Example:

a (and more) Text information about the part of the day (AM, PM; localized) AM

D Number day of the year without leading zeros 4

DD (and more) Number day of the year with leading zeros 09

d Number day of the month (starts with 1) 5

dd (and more) Number day of the month with leading zeros (starts with 1) 05

E, EE, EEE Text abbreviated day of the week (localized) Mon

EEEE (and more) Text full weekday name (localized) Monday

e Number day of the week as a number (1 = Mon, 7 = Sun) without
leading zeros

3

ee (and more) Number day of the week as a number (1 = Mon, 7 = Sun) with
leading zero

03

G (and more) Text designation of the era (AD, BC; localized) AD

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 23 / 104

4.1.2.7 boolean (Boolean values)

The boolean values may be used in the expressions, parameters of methods and the X-script commands similarly
to in the Java language. The possible values are "true" and "false." Boolean values may be a result of the
expression, comparing, etc. If in a Boolean expression occurs a reference to the attribute of the current element
(recorded as "@" followed by the name of the attribute), then it automatically is converted to "true" if the

H Number hours in the range of 0-23 without leading zeros 8

HH (and more) Number hours in the range of 0-23 with leading zeros 08

h Number hours in the range of 1-12 without leading zeros 9

hh (and more) Number hours in the range of 1-12 with leading zeros 09

k Number hours in the range of 0-11 without leading zeros 9

kk (and more) Number hours in the range of 0-11 with leading zeros 09

K Number hours in the range of 1-24 without leading zeros 9

KK (and more) Number hours in the range of 1-24 with leading zeros 09

M Number day of the year without leading zeros 6

MM Number day of the year with leading zeros 06

MMM Text abbreviated month name (localized) Jan

MMMM (and more) Text full month name (localized) January

m number number of minutes (without leading zeros) 1

mm (and more) number number of minutes (with leading zeros) 1

RR number year of (two digits e.g. in Oracle database). Century shall
be supplemented by the following rules:

If a RR is in the range of 00 - 49, then

a) if the last two digits of the year are 00 - 49. then the
first digits will be completed from the current century.

b) if the last two digits of the year are 49 - 99. then the
first digits will be completed from the current century
decreased by one.

If an RR is in the range of 50 - 99, then.

c) if the last two digits of the year are 00 - 99. then the
first digits will be completed from the current century
increased by one.

d) are the last two digits of the year 49 - 99, then the
first digit will be completed from the current century.

1945, 2011

S (and more) number number of milliseconds 123

s number number of seconds (without leading zeros) 5

ss (and more) number number of seconds (with leading zeros) 05

YY number (deprecated) two digits, century part from the current
date (can be used only in formatting mode)

20

y number year from a date 1848

yy number year in two digits form, which is interpreted so that the
values of "01" to "99" are assigned the values and value of
1901 to 1999 and the value "00" is assigned the value 2000

yyyy (and more) number year in four-digit (or more digits) form 1989

z text abbreviated name of the zone CEST

zz (and more) text full name of the zone Central European Sumer
Time

Z zone zone starting with ”+” or ”-” followed HH: mm +01:00

ZZ zone zone starting with ”+” or ”-” followed HH:mm or zone ID +01:00 or US/Samoa

ZZZZZ zone zone in the form of ”+” or “-” followed by HHmm +0100

ZZZZZZ (and more) zone zone in the form of ”+” or ”-” followed HH: mm +01:00

X-definition 4.2 Language Description

24 / 104 Version: 4.2.2.26, Date: 2024-03-31

attribute exists, and "false" if it does not exist. If in the Boolean expression occurs a ParseResult value, then it is
"true" if the value was parsed without errors and "false" if an error was detected.

4.1.2.8 char (character)

The char value represents an utF-16 character. The char value has no constructor. It can be obtained from the
string by the "charAt" method, or the result of the "char" validation method. The char value may be also the result
of casting an int value. When adding to a string, a character is added to the end.

Examples:

char c1 = (char) 33; /* c1 has the value '! ' */
char c2 = "abc". charAt(1); /* c2 has the value of 'b' */
String s = "abc" + c2; /* s value is "abcb" */

The char validation method reads one character. If it is a backslash, it must be doubled, otherwise, it is used as an
escape character ("\n", "\t", "\f" and possibly followed by a hexadecimal representation of the UTF-16 character
in the form "\uxxxx").

4.1.2.9 Locale (information about the region)

This type contains information about language, country, and geographical, political, or cultural region. It may be
used when the printable information is created from data values (number format, currency, date time format,
etc). Value of this type can be created by the following constructors:

new Locale(language) or
new Locale(language, country) or
new Locale(language, country, variant)

Where language is lowercase two-letter ISO-639 code, the country is uppercase two-letter ISO-3166 code, and the
variant is vendor and browser-specific code.

4.1.2.10 Regex (Regular expression)

Objects of this type can be created with the constructor "new Regex(s)" where s is the string to the source of the
shape of a regular expression (in the Java format). The regular expression matches the specification based on Java.

4.1.2.11 RegexResult (a result of the regular expression)

Objects of this type are created as a result of the method "r.getMatcher(s)" where s is a string to be processed
with the regular expression r.

4.1.2.12 Input/Output (stream)

The objects of this type are used to work with files and streams. Two variables with the Output value are
automatically created: the "$stdOut" (writes to the java.lang.System.out) and "$stdErr" (writes to the
java.lang.System.err) and one variable "$stdIn" of the type "InputStream" (reads from java.lang.System.in). The
value of the variable "$stdOut" is automatically set to the methods of "out" and "outln" as the default parameter.
"Similarly, the "$stdErr" value is used as the default output of the method "putReport".

4.1.2.13 Element (XML element)

The objects of this type are the X-script instances of “org.w3c.dom.Element”. They may be, for example,
produced as the result of the method “getElement”.

4.1.2.14 Bytes (array of bytes)

This object can be the result of the “parseBase64” or "parseHex" methods. The constructor for an empty array of
bytes is:

Bytes bb = new Bytes (10); /* Array of 10 bytes Assigned. */

For methods to work with arrays of bytes see 4.1.19 Implemented X-script methods.

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 25 / 104

4.1.2.15 NamedValue (named value)

The named value object is a pair consisting of the name and the assigned X-script value (any type of X-script). The
name must match the XML name. You can create a named value by writing the beginning character "%" followed
by the name, followed by an equal sign ("="), and then the specification of a value. For example:

 NamedValue nv = %x:y, named-value = "ABC";

Note "x:y" is here the name of the named value "nv" and "ABC" is its value.

4.1.2.16 Container (sequence and/or map of values)

The objects of this type can be the result of certain methods (XPath, XQuery, etc.). The object Container contains
two parts:

1. the part with named values (the mapped part, the entry is accessible by a name)

2. the part with a list of values (the sequential part, the entry is accessible by an index)

The empty Container can be created using the constructor Container c = new Container();

The value of type Container can also be specified in square brackets "[" and "]", where the list of values is written.
The items are separated by a comma. The named values are stored in the mapped part and the not-named values
are stored in the sequential part of the created container. For example:

Container c = [%a=1, %b=x, p, [y,z], "abc"];

The mapped part contains the named values "a" and "b". The sequential part is the list of the value of p, the next
object is a Container, and the string "abc".

To work with the object "Container" you can use a variety of methods listed below (e.g. "toElement", see 4.1.19,
Implemented X-script methods).

The container can occur in Boolean expressions (i.e., it may be in the "match" section or the "if" command, etc.).
The value of a Container object is converted to the Boolean value according to the following rules:

1. When an object contains exactly one sequence item of type Boolean, then the result is the same as the
value for this item.

2. If it contains exactly one sequence item of the type "int", "float" or "BigDecimal", then the result is true
if the value of this entry is different from zero.

3. In all other cases, it is true, if the object is part of a nonempty sequence, otherwise, the result is false.

Note: The type of Container is also the result of expressions XPath or XQuery. If the XML node on which the
expression is null, the return should be an empty Container.

4.1.2.17 Exception (program exception)

This object is passed when you capture an exception of the executed program (error) in the construction "try {...}
catch (Exception ex) {...} ". The exception can be caused in the X-script with the "throw" command. An object of
type “exception” is possible to create in the X-script using the constructor "new Exception(error message)".

4.1.2.18 Parser (the tool used to parse string value)

Objects of this type are mostly created when the X-definition is compiled. A parser is an object on which it is
possible to invoke a validation method. The result of this method is a ParseResult object. The parser object is
constructed when a validation method is specified in the X‑script.

4.1.2.19 Parseresult (a result of parsing/validation)

Objects of this type are the results of a parser. If a ParseResult instance occurs in a boolean expression, it is
converted to a boolean value, and it is true if errors are not reported, otherwise, the value is false (i.e., an
automatic call of the method "matches ()").

4.1.2.20 Report (message)

This object represents a parameterized type and language-customizable message. We can create the message:

X-definition 4.2 Language Description

26 / 104 Version: 4.2.2.26, Date: 2024-03-31

Report r = new Report ("MYREP001", "this is an error");

Alternatively, we can use, for example, the method "getLastError".

4.1.2.21 BNFGrammar (BNF grammar)

Objects of the type BNFGrammar are declared in the element "xd:BNFGrammar" (model) or it is possible to create
them using the constructor. See 2.12 BNF grammar in X-definition.

4.1.2.22 BNFRule (BNF grammar rule)

The reference to a rule of BNF grammar. You can use the grammar rule, for example, to validate the text values of
attributes or text nodes. The rule from the BNF grammar can be obtained by using the method “rule(ruleName)”.

4.1.2.23 EmailAddr (Email address)

The email address contains an email address, including a user name and an internet address.

Constructor:

EmailAddr(String email)

The string with the e-mail address must be according to the RFC 5321 specification.

Example:

EmailAddr addr = new EmailAddr("(John Smith) j.smith@some-company.org"); // string with email address

The validation method is "emailAddr".

In X-components, the type value is stored as a class instance: org.xdef.XDEmailAddr

4.1.2.24 GPSPosition (value containing GPS position)

The GPS position contains latitude, longitude, and altitude. Optionally contains the name of a location.

Constructors:

GPSPosition(float latitude, float longitude) // latitude, longitude
GPSPosition(float latitude, float longitude, String name) // latitude, longitude, name of place
GPSPosition(float latitude, float longitude, float altitude) // latitude, longitude, altitude
GPSPosition(float latitude, float longitude, float altitude, String name) // latitude, longitude,
altitude, name

Where:
latitude the latitude in degrees; the range of values is (-90.0 .. 90.0).
longitude in degrees; the range of values is (-180.0 .. +180.0).
altitude in meters; the range of values is (-6376500.0 .. unlimited). The value 6376500.0 is

used in the calculations as the Earth's radius instead of space; any character string or
null.

Methods over GPSPosition type:

latitude() returns latitude
longitude() returns the longitude
altitude() returns altitude, if not specified it returns -6376499.9 (minimum value - the

center of the planet Earth)
name() returns the name of a location or null
distanceTo(GPSPosition pos) returns the distance to the "pos" location in meters. The Earth radius used in

the HaverSine formula is 6376500.0 m. The altitude is ignored in the
calculation.

A type validation method is "gps()". The string format in text values is:

"latitude, longitude[, altitude[, name]]"

Where the values between brackets are: latitude (float number), longitude (float number), and altitude (float
number). Name, if specified, must be either a string of letters or arbitrary characters in quotes, where the
occurrence of quotes must be preceded by a backslash.

Examples of "gps" values:

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 27 / 104

48.2, 16.37 48.2, 16.37, Wien
48.97, 14.47, 381 48.97,
14.47, 381, "České Budějovice"

In the X-components, the type value is a class instance: org.xdef.sys.GPSPosition.

The longitude and optionally an altitude and/or name of a place. A GPSPosition can be obtained as a result of the
validation method “gps” or by the constructor. Examples.:

GPSPosition x = new GPSPosition (50.08, 14.42); // latitude, longitude
GPSPosition x = new GPSPosition (50.08, 14.42, 399.0); // latitude, longitude, altitude
GPSPosition x = new GPSPosition (50.08, 14.42, “Prague”); // latitude, longitude, name of a place
GPSPosition x = new GPSPosition (50.08, 14.42, 399.0, “Prague”); // latitude, longitude, altitude, name
of a place

4.1.2.25 Price (price value containing a monetary amount in a given currency)

Constructor:

Price(BigDecimal amount, String code)

Example:

Price x = new Price(new BigDecimal(“3.25”), "USD");

 Where the amount is a monetary value in the currency specified in the code parameter.

 The value can be either float, integer, or Decimal. The parameter code is a string with three characters
corresponding to the ISO 4217 specification (e.g. "USD").

Methods over Price Type:

amount() returns the value of the monetary amount as a decimal
currency() returns a currency object
fractionDigits() returns an integer with the recommended number of decimal places for the currency

according to ISO 4217, or -1 if not specified.
display() returns a string with a value in ISO 4217 format.

 The validation method is "price". Examples of values of type "price":

 12 USD
 0.45678 XAU

 In X-components, the type value is stored as a class instance: en.syntea.xdef.sys.

4.1.2.26 Currency (value of Currency)

The Currency contains currency information.

Constructor:

new Currency(string with ISO 4217 currency code)

The validation method is "currency". Example of value of type "currency":

USD

Methods over Currency type:

currencyCode() returns a string with ISO 4217 currency code

4.1.2.27 InetAddr (value containing IP address)

The InetAddr contains an IP address (IPv4 or IPv6).

Constructor:

new InetAddr(string with IP address)

4.1.2.28 URI (URI – universal relocation identifier)

The value URI contains an object with.URI identifier.

Constructor:

URI(String uri)

The validation method is "anyURI".

X-definition 4.2 Language Description

28 / 104 Version: 4.2.2.26, Date: 2024-03-31

In X-components, the type value is stored as a class instance: java.net.URI

4.1.2.29 uniqueSet (set of unique items – table of rows)

This type is used to ensure the uniqueness of a key that defines items in the uniqueSet. The key may be composed
of more key parts that together represent the key. The uniqueSet may be considered as a table of rows where
each row contains key values (we can call it the key of a row). To this key may be also assigned specified values
(i.e. the uniqueSet is a table with rows similar to a database table where the row contains a key and assigned
values). It is used in conjunction with the validation of the text values of attributes or values of text nodes. A row
from the uniqueSet table contains a key part, which is unique within a table, and values are assigned to a key.
Each key part and each value have a name and are declared in the uniqueSet specification. Values to the actual
item may be set by assignment to the value. The key of the last row inserted into the table is possible to store to
the uniqueSetKey object by the method getActualKey(). (see 4.1.14, Set of unique values (uniqueSet)).

4.1.2.30 uniqueSetKey (the key of a row from the uniqueSet table)

This type contains a key part from an actual valid row in a given uniqueSet table (note it may be obtained after a
key was inserted (or found) in the uniqueSet table). It is possible to set the value to the actual key of the
uniqueSet table by the method resetKey().

4.1.2.31 Service (database service; access to a database)

This object allows you to access services of different databases. Mostly it is passed to the X-definition from an external
program. However, you can also create the Service object in the X-script:

Service connection = new Service (s1, s2, s3, s4);

The s1 parameter is the type of database (e.g. "jdbc"), s2 is the database URLs, s3 is the user name and finally, the password is
s4.

4.1.2.32 Statement (database command)

The Statement object contains a prepared database command. It is possible to create it from the Service e.g. by
the "prepareStatement(s)" method, where "s" is a string with a database command:

Statement stmt = connection.prepareStatement(s);

4.1.2.33 ResultSet (a result of a database command)

This object contains the result of the database command. In the case of a relational database, it is a table whose
rows have named columns. It is possible to access the individual rows with the "next()" method. In the case of an
XML database, the result depends on the command, e.g., it can be an object Container.

4.1.2.34 XmlOutStream (data channels used for continuous writing of XML objects to a stream)

This object type allows you to write large XML data, whose range could exceed the size of the computer's
memory. This way of writing is often used in conjunction with the command "forget". The object can be created
by the constructor "new XmlOutputStream(p1, p2, p3)". The parameter p1 is mandatory. It must match the path
and the name of the file to which the writing is provided. The p2 parameter is the name of the character encoding
table. The parameter p3 indicates whether to create the header of the XML document. Example of typical use in
the X-script of X-definitions:

 XmlOutStream xstream = new XmlOutStream ("c:/data/file.xml", "UTF-8", true);
...
 XStream.writeElementStart();
 XStream.writeElement (); // write the whole child
...
 xstream.writeElement();
 xstream.writeElementEnd(); // write end of started element
...
 XStream.close();

4.1.3 Access to values from the processed document

In the X-script it is also possible to use values of attributes or text nodes obtained from a processed XML
document, e.g. by using the method 'getText', 'getElement', 'getElementText' (see 4.1.19 Implemented X-script
methods).

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 29 / 104

It is possible to write "@attributeName". If this entry appears in the expression of the type Boolean, then the
value is true if the attribute with that name exists, otherwise, it is false. If the entry is listed in an expression, the
result is the string value of the attribute or an empty string.

 <A xd:script = "match (@a AND @b OR @c)" ...

The result of the section "match" will be true if in the element "A" are both attributes "a" and "b" or "c" attribute.

4.1.4 A local variable in X-script

In the X-script of X-definition, it is possible to declare local variables in a command block. The local variable is
represented by a name (identifier). The local variable must have a specified value type it represents. The validity
of a local variable is within the statement (i.e., "for") of the compound statement (i.e., between the curly
brackets) in which it was declared.

 for (int i=0, j=5; i LT j; i++ {
 int k; /* local variable k*/
 ...
 }

4.1.5 Variables of the element model

In the X-script of an element, you can declare the variables that are valid (and therefore accessible) only at the
time of the processing of a current element. To declare such variables, write them in the X-script section "var",
which must be written at the beginning of the X-script:

 <A xd:script="var int b=0, c=0; occurs *; finally outln('B=' + b + ', C=' + c)">
 <B xd:script="*; finally b++"/>
 <C xd:script="*; finally c++"/>

At the end of the processing of element A, the number of occurrences of elements (B) and (C) is displayed.

If you need to specify more declarative statements write them between curly brackets:

 <A xd:script="var { int i=1; String s; }; *">

4.1.6 Declared objects

Declaration of variables, methods, and types is written in the element <xd:declaration> as the direct child
descendant of an X-definition. The scope of accessibility of the declared objects may be specified in the optional
attribute "xd:scope". Possible values are either "global" (this is the default value) and then all declared objects in
this declaration are accessible from any X-definition from the project, or "local" and then the declared objects are
accessible only from the X-definition where the specification is written.

4.1.6.1 Declared variables

The declaration of a variable can be preceded by the qualifier "final" and "external".

The qualifier "external" indicates the value of a variable can be set externally before the process of X-definition is
started (so the value of the variable is not initialized by the X‑definition processor). Some values of the declared
variables are released from the memory at the end of the process (database objects, streams, etc.). However, if a
variable was declared as external then even those values are not released.

The qualifier "final" sets a variable to be constant and thus it is prevented from any further modification. To such
objects, there must be assigned a value in the declaration statement (only if it was not declared as external - in
such case, the assignment is done externally).

Example:

<xd:declaration xd:scope="global">
 external int globalVariable;
 final String const = "bla bla";
 external final extConst;
 int id, start = 0, end = 50;
 ...
</xd:declaration>

The variables not declared as final, (as well as Java class objects) are initialized by the default initial value. That is,
the uninitialized global variables are set to the default values (zero for the numbers, false for the Boolean values,
and null for the other objects).

X-definition 4.2 Language Description

30 / 104 Version: 4.2.2.26, Date: 2024-03-31

All objects that are created in the X-script are, if necessary, automatically closed (by the method "close"
immediately after completion of the X-definition process: i.e. after returning control code to the Java program
from which the process was called. However, if a variable was declared as external, then its closing is left to the
programmer, even if the appropriate variable was set by an X-script command. For in the case of an object of the
"Service" type, the "close" method is generated only if the corresponding variable is not marked as "external".

The X-definition compiler reports an error for any attempt to assign a value to a variable marked as "final".
However, if the variable is marked as "external" the initialization value can only be assigned externally. That is the
variable can't be initialized in the declaration statement (nevertheless, the external variable can be also marked as
"final" and it can't be changed in the X-script command).

4.1.6.2 Declared methods

Before a method, the name of the type of the result must be specified, followed by the name of the method, and
followed by the declaration of a parameter list. The command block of the method that is recorded is in curly
braces "{" and "}". The result value is passed to the method with the command "return". Methods for the
validation of text values must return the ParseResult or the Boolean value true or false. The method specified for
the "create" event in the elements must return e.g. a value of type "Container", for the "create" event in the
attributes and text nodes it should return e.g. a value of type "String".

The formal parameter list of the declared methods is written in parentheses. The individual parameters are
separated by a comma. Each parameter is written as a pair, consisting of the type of the value of a parameter and
the name of the parameter. The parameter list can be empty, then it is written as "()". The executive commands
are recorded as the command block in curly brackets "{" and "}". Parameters can be used in the command of the
method in a similar way as the variables. The initial value is determined when you name the method. The names
of the types of values that can be used as parameters of a declared method are listed in the following table:

Table 2 - Names of types of parameter values

Name of type Description of value

boolean Boolean value

Datetime date and time

float floating-point number

int integer number

String character string

Regex regular expression (Java format)

RegexResult result of a regular expression

Output output stream

Input input stream

Bytes array of bytes

Container an array of objects of other types

Exception exception (the parameter of the "catch" statement)

Message Message

BNFGramar BNF Grammar

BNFRule BNF grammar rule

XMLOutStream the stream used to write XML data

Note: Do not confuse the names of types with similarly named validation methods of the data types whose names
may be different in capitalization.

In the following example, validation methods are declared. These methods must return a value of the ParseResult
value or a Boolean value (see the command "return"). Note that if the body of a validation method returns the
result, an appropriate error report can be also set (see the method "color"). E.g. the command "return error (' ...
')" returns false because the method "error" returns the value "false". The variable "today" contains a date and
time of the start of the process. The method "getToday" returns the date in a given format. It is advisable to write
the X-script declaration into the CDATA section (then you can write characters "<", ">", "&" without the XML
entities):

<xd:declaration xd:scope="global">

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 31 / 104

<![CDATA[
Datetime today = now(); /*date and time of processing start */

/* would return date and time of processing start */
String GetToday() {
 return today.toString("dd. MM. yyyy HH: mm: ss");
}

/* Check the value with a name */
boolean name() {
 If (string (5,30)) {
 outln ('Name: ' + getText ());
 return true;
 }
 return error ('Error of name length: ' + length (getText ()));
}

/* Check the value with a color */
boolean color() {
 /* report error provides the validation method "enum", which also returns the string with value */
 if (enum('red', 'green', 'blue')) return true;
 return error("Incorrect color");
}

/* Value can be -1 or a number in the given interval */
boolean value(int min, int max) {
 if (!int()) {
 return error('Not numeric value');
 }
 i = parseInt(getText ());
 if (i == -1)
 return true;
 if (i< min)
 return error('Value is too small');
 else if (i > max)
 return error('Value is too big');
 return true;
}
]]>
</xd:declaration>

4.1.6.3 Declared data type

In some cases, it is appropriate to declare the data type. In the declaration section, the data type declaration
starts with the keyword "type". It points to a validation method. Example:

<xd:declaration>
 type myType int(10, 20);
</xd:declaration>

<elem attr="required myType">

The value of the attribute "attr" shall comply in the same way as with the validation method int(10, 20).

If the user is not with those implemented types, he can define the method for a custom type. The result can be of
type boolean or ParseResult. If the result is the value of type ParseResult it is possible to use the parsed value.
Example with ParseResult:

<xd:declaration>
 ParseResult oddNumber() {
 ParseResult p = int ();
 If (p.intValue () % 2 == 0) {
 p.error("The number must be odd!");
 }
 return p;
 }
</xd:declaration>

Prints “true" if the attribute has a value of 1.

An example with Boolean is simpler. However, in the "onTrue" section you cannot work with the parsed value
result (it will be, in this case, the same as the parsed string):

<xd:declaration>
 boolean oddNumber {

X-definition 4.2 Language Description

32 / 104 Version: 4.2.2.26, Date: 2024-03-31

 return parseInt(getText ()) % 2! = 0? true: error("Number must be the odd!");
 }
</xd:declaration>

Here it always prints "false", because the value of the validation method is in this case a string, and it is never
equal to the integer value 1.

4.1.7 Built-in variables and constants

In the X-script it is possible to use some predefined variables and constants:

Table 3 - Built-in variables and constants

Name Type Description

$stdIn Input standard input stream

$stdErr Output standard error protocol stream

$stdOut Output standard output stream

$PI Float constant π, the ratio of the circumference of a circle to its diameter
(3.141592653589793) 3.14159265 ….)

$E Float constant with the number of the nearest e (the base of natural
logarithms: 2.71828182….)

$MAXINT Int constant with the highest whole number (9223372036854775807, ie.
263-1)

$MININT Int constant with the highest whole number

(-9223372036854775807, ie. -263)

$MAXFLOAT Float constant with the largest floating-point number, applicable in the
X-script

$MINFLOAT Float constant with the smallest floating-point number applicable in the
X-script

$NEGATIVEINFINITY Float constant corresponding to negative infinity in floating-point operations

$POSITIVEINFINITY Float constant corresponding to positive infinity in floating-point operations

4.1.8 Expressions

In the X-script it is possible to obtain values as the result of expressions that are similar to the ones in other
programming languages (Java, C, etc.). The detailed description of this goes beyond this text and the reader can
familiarize themselves with it e.g. in the description of Java programming language. The result of the expression is
always the value of any of the above types. An example of the use of the expression in the method parameter
(regarding the value of the declared variable "max"):

 <Product count = "required int(0, max + 100)" />

The special operator “CHECK” allows testing the value of the ParseResult type. The left operand is of the
ParseResult type, the right operand is of the boolean type. The result is the ParseResult value. The expression on
the right side of the operator is executed only if no error is detected in the ParseResult value. If the result is
"false", the error XDEF822: "Parsed result does not fit to CHECK argument" is set to the ParseResult value.
Typical use is for databases where the boolean value is obtained using an external method. This is an additional
test of the correctness of the parsed value.

Because of the text of XML attributes and text nodes the characters "&", "<", ">" must be expressed using the
predefined entities "&", "<", ">", there are defined keywords used as an alternative notation of the
operators. That allows you to write the X-script so it is easier to read:

Table 4 - Alias keywords used as the alternative notation of operators

Operator Alias Meaning Data types

Binary operators:

& AND Logical AND. boolean, int

&& AAND Conditional logical AND. Boolean

| OR Logical OR. boolean, int

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 33 / 104

|| OOR Conditional logical OR. Boolean

< LT The relation is less than. int, float, String, Datetime, Duration

> GT The relation is greater than. int, float, String, Datetime, Duration

<= LE The relation is less or equal than. int, float, String, Datetime, Duration

>= GE The relation is greater or equal than. int, float, String, Datetime, Duration

== EQ The relation is “equals”. Any type

!= NE The relation is “not equals". Any type

<< LSH Left shift of integer. Int

>> RSH The right shift of integer. Int

>>> RRSH Binary zero-filled the right shift. Int

% MOD Arithmetic modulus. int, float

^ XOR Logical or bitwise XOR“. boolean, int

+ Not exists Addition of numbers or the
concatenation of strings.

int, float, String

- Not exists Subtraction. int, float

* Not exists Multiplication. int, float

/ Not exists Division. int, float

Unary operators:

! NOT Logical NOT. Boolean

~ NEG Bitwise negation (of a number). Int

++ Not exists Increment by 1. Int

-- Not exists Decrement by 1. Int

Assignment operators:

= Not exists Simple assignment. The left operand is
set to the value of the right operand.

Any type

+= Not exists Add to the left operand the right
operand.

int, float, String

-= Not exists Subtract from the left operand to the
right operand

int, float

*= Not exists Multiply the left operand by the right
operand.

int, float

/= Not exists Divide the left operand by the right
operand.

int, float

%= MODEQ The left operand is the modulus of the
left and the right operand.

int, float

<<= LSHEQ The left operand is bitwise shifted left
by the right operand.

Int

>>= RSHEQ The left operand is bitwise shifted right
by the right operand.

Int

>>>= RRSHEQ The left operand is bitwise right shift
zero-filled by the right operand.

Int

&= ANDEQ The left operand is bitwise or logical
AND with the right operand.

int, Boolean

^= XOREQ The left operand is bitwise or logical
XOR with the right operand.

int, Boolean

|= OREQ The left operand is bitwise or logical OR
with the right operand.

int, Boolean

Special operator CHECK

CHECK CHECK Check ParseResult. The first operant is
the ParseResult value, The second
operand is a Boolean expression. If the
result of the expression is false the

ParseResult, Boolean.

The type of result of an operation is ParseResult.

X-definition 4.2 Language Description

34 / 104 Version: 4.2.2.26, Date: 2024-03-31

ParseResult is set to the error.

Example:

 x = p GE 125 AAND q LT 3;

is equivalent to:

 x = p >= 125 && q < 3;

4.1.9 Events and actions

The specification of action always starts with the name of the event, followed by the command that performs the
appropriate action.

Table 5 - Events

Event name Description

create The action assigned to this event is performed only in the construction mode when the
processor launches the new object from the X-definition (even before the event "init"). This
action returns the value that is used for the construction of the corresponding object (an
element, attribute, or text value). For the attributes and text nodes, it is expected a value
from which is possible to create a text string. For elements, it is expected an object from
which is possible to create it. E.g. it can be an XML element (name and ancestors of this
element are insignificant for further processing). If no action is specified, then the current

context is used (see 5.2 Construction mode). The result type of the expression must be
one of the following:

1. null - then the item is not created

2. org.w3c.dom.Element or org.w3c.dom.NodeList if the action is specified in the X-script of
Element. The elements are created according to the nodes from the list.

2. Container. If the action is specified in the X-script of Element. The elements are created
according to the items from the sequential part of the Container. In the case of an attribute,
the value of the named value of the Container with the same name is used.

3.StatementResult. If the action is specified in the X-script of Element, the elements are
created from rows of the table. In the case of an attribute, it uses the value of the column
with the same name (case insensitive) from the actual row.

4. String, if the action is part of the X-script of an attribute or a text node. In the case of an
element, it is created if the string is not null.

5. integer number in the case of the X-script of an Element

6. boolean value in the case of the X-script of an Element

7. The other values are converted to a String value

default This keyword may be defined only in the X-script of models of attributes or text nodes. If
the attribute or text value of the specified model does not exist, the string created from the
associated action will be set. The event occurs after handling events onFalse, and
onAbsence.

match The event "match" occurs before the further processing of an element or attribute. This
action must return the Boolean value "true" or "false". If the value is "true", then processing
continues if it is "false", then the current element or attribute or text node is not handled
according to the model in which the action "match" is specified. An action in this event has
available only the actual data of an XML document, i.e. the actual process of the element
and its attributes (however, not yet processed by X-definition).

finally The event "finally" occurs at the end of the processing of an element according to the
model. After that, deletion from the memory happens only in the case of the action
"forget".

forget The event of the action "forget" occurs at the end of the processing of the element (even
after the event "finally"). This action is important in particular when processing large XML
data that cannot be fully placed into computer memory. The "forget" action causes removal
from the memory of the appropriate element after processing and after all actions (even
after the event "finally") are completed. However, the symptoms of examinations and the
occurrence of an element remain set. WARNING: the action "forget" (unlike the other
events) is not inherited from referred objects, it is always necessary to specify in the
respective element!

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 35 / 104

init The “init” action will be performed before further processing of an object. Automatic
execution of certain functions can be set using the "options" (see ignoreAttrWhiteSpaces,
trimAttr, ignoreTextWhiteSpaces, setAttrLowerCase, setAttrUpperCase, trimText,
setTextLowerCase, setTextUpperCase). In the code of the "init" action of elements, you can
access only attributes of the processed element since child nodes might not be available
yet.

onAbsence This event occurs when the minimum of the specified occurrence is not met (e.g. if the
required object is missing). If no action is specified and a minimum condition is not met, an
error message is recorded in a log file.

onExcess The action of this event is performed when an element exceeds the upper limit of the
specified maximum number of occurrences. If the action is not specified, an error message
is recorded in a log file.

onFalse The action of this event is performed if the result of the validation method returns an error.
If the action is not specified, an error message is recorded in a log file.

onIllegalAttr The action of this event is performed when an undefined or unauthorized attribute occurs.
If the action is not specified, an error message is recorded in a log file.

onIllegalElement The action of this event is performed when an undefined or unauthorized element occurs. If
the action is not specified, an error message is recorded in a log file.

onIllegalText The action of this event is performed when an undefined or unauthorized text node occurs.
If the action is not specified, an error message is recorded in a log file.

onIllegalRoot This event description is allowed only in the X-definition X-script. The action is performed
when the element is not found in the list from the attribute "xd:root" in X-definition. If the
action is not specified, an error message is recorded in a log file.

onStartElement This event is performed after processing all attributes but before the processing of the child
nodes of the element.

onTrue The action of this event is performed if the result of the validation method is not an error
(parsing was OK). If no action is specified, the string from the parsed object is stored as a
text value of the parsed attribute or text node.

onXmlError The action of this event is allowed only in the X-definition X-script. The action is performed
when the parser detects an error in the format of the source XML document. If the event is
not specified, an error message is recorded in a log file or, if it is a serious error, further
processing does not continue, and the program ends with an exception.

4.1.10 Quantifier (Specification of occurrence)

The description of objects in a model requires the specification of the limits of the occurrence of an object (the
quantifier). Specifications of the quantifier of an element can be written in one of the following forms:

occurs ? - the element may not occur or may occur once (same as "optional" or occurs 0 .. 1)

occurs * - the element may not occur or the number of occurrences is not limited (same as 0 .. *)

occurs + - the element must occur once or more times (the same thing as occurs 1 .. *)

occurs m - the element must occur exactly m times (the same as occurs m..m)

occurs m..n - the element must occur minimum m-times and may occur maximum n times

occur n..* - the element must occur minimum n-times and may occur unlimited times

required - the element must occur exactly once (same as occurs 1 or occurs 1..1)

optional - the element may occur once or may miss (same occurs 0..1)

To specify the action of events related to the occurrence, there may be specified in the X-script sections
"onExcess" and "onAbsence". The action "onExcess" is performed if the occurrence of the given object exceeds
the maximum limit of occurrences. The action "onAbsence" is performed if the minimum number of occurrences
has not been reached.

Note: for compatibility reasons, it is possible to skip the quantifier keyword "occurs". The specification "required"
is the default, and it can be omitted.

The following specifications are equal:

a = 'occurs 1..1 string()'
a = '1 string()'
a = 'required string()'

X-definition 4.2 Language Description

36 / 104 Version: 4.2.2.26, Date: 2024-03-31

a = 'string()'

b = 'occurs 0..1 string()'
b = 'optional string()'
b = '0..1 string()'
b = '? string()'

<c xd:string="occurs 1..*">
<c xd:string="1..*">
<c xd:string="occurs +">
<c xd:string="+">
...

4.1.11 Special quantifiers (ignore, illegal, fixed)

ignore - The node can occur unlimited times, but its incidence in processing is ignored and not set to
the result data.

illegal - The element may not occur; the error is reported and its incidence in processing is ignored and
not set to the result data.

fixed - The validation section of attributes and text nodes consists of a quantifier and a validation
method. In the case the value is fixed it is possible to specify the keyword "fixed" and a value
that must occur in the validated data, then the text node or attribute must have this value. If it is
missing, the value is inserted into validated data. The specification of the quantifier is not
allowed here.

Example:

 fixed '2.0'

Is identical to:

 required eq('2.0'); onAbsence setText('2.0')

Note as a value of "fixed" a variable can also be written:

 <xd:declaration xd:scope="local"> String today = now().toString(); ... </xd:declaration>
 ...
 fixed today

In some cases, it is appropriate to use a fixed value to also specify the data type of value. For example:

 required float(); fixed '2.0'

4.1.12 Check the data type

The specification of a quantifier can be followed by a description of the validation method used to check the value
of the attribute or text node. The result of the validation of the event is either a ParseResult object or a Boolean
value. If the validation method is not described, the "string()" is used as default. If the option
"ignoreEmptyAttributes" is specified, the attributes with empty strings are completely ignored.

A set of in-line functions to check the format of values commonly encountered in the X-script is implemented. In
addition to the implemented validation methods, you can declare the custom functions or use the external
functions.

The result of a validation method returns the information if a data type is valid or not. If there is no action
"onFalse" specified and if the result is false, an error message is recorded into a log file. If the "onFalse" action is
specified, then errors recognized by the validation method are cleared, and you can report your error message.

Examples of the validation of data type and the associated actions:

 int(100,999); onTrue out (getText()); onFalse error('This is my error message');
 string(10.20);
 xdatetime('yyyyMMddHHmmss');

If an appropriately implemented validation method is not available, you can declare your custom validation
method specified in the declaration section and you can refer to it by its name.

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 37 / 104

4.1.13 Implemented validation methods

The data types implemented in the X-definition correspond to the types of the XML schema (XSD). Table 4a is a list
of implemented methods. These methods may include named parameters, where the name corresponds to a
facet of the respective type of XML schema.

Allowed named parameters are listed in the following table, and the corresponding letter sequences are
described in the last column.

Table 6 - Named parameters corresponding to facets in XML schema

Named parameter corresponding to
the facet in XML schema

Value Letter

%base string with the name of a base type b

%enumeration list of allowed values of a type "[" ... "]" e

%fractionDigits number of digits in the fractional part of a number f

%item reference to the validation method I

%length the length of a string, array, etc. L

%maxExclusive parsed value of the data must be less than the parameter. M

%maxInclusive parsed value of the data type must be less than or equal to
the parameter.

M

%maxLength the length of a string, array, etc. L

%minExclusive parsed value of the data must be greater than the
parameter.

M

%minInclusive parsed value of the data must be greater than or equal to
the parameter.

M

%minLength minimal length of a string, array, etc. L

%pattern list (Container) of strings with regular expressions
(according to XML schema format), which must be met
when processing the data

P

%totalDigits number of digits of the whole part of the validated
number

T

%whiteSpace specification of how to process white spaces in the
validated data. Possible values are: "collapse", "replace" or
"preserve"

W

For example:

 string(5, 10) corresponds to the string(%minLength=5, %maxLength=10)

or

 decimal(3, 5) corresponds to the decimal(%totalDigits=5, %fractionDigits=3)

After the sequence parameters, the named parameters can be listed:

 string(5, 10, %whitespace="preserve", %pattern=["a*", "*.b"])

or

 decimal(3, 5, %minExclusive=-10, %maxExclusive=10)

Note the methods that handle the date check if the year value from a given date is in the interval <actual year-200,
actual year+200>. This check can be disabled using the property "xdef_checkdate" to "false" (the default value is
"true"). Therefore, the date of 1620-08-11 is evaluated as an error if you do not set
properties.setProperty(“xdef_checkdate", “false").

A list of the implemented validation methods compatible with XML schema is described in the following table.

A detailed description of the data types of XML schema can be found at https://www.w3.org/TR/xmlschema11-
2#datatype.

The penultimate column of the following table describes the result type of a validated string. The last column
describes the named parameter and sequence parameters. The capital letter M describes the possibility of
specification sequential parameters representing the “minInclusive” and the “maxInclusive” values. The capital

https://www.w3.org/TR/xmlschema11-2#datatype
https://www.w3.org/TR/xmlschema11-2#datatype

X-definition 4.2 Language Description

38 / 104 Version: 4.2.2.26, Date: 2024-03-31

letter L describes the possibility of specification sequential parameters representing the “minLength” and
“maxLength” values.

Table 7 - Validation methods of XML schema data types

Method name Description Result type Parameters

anyURI URI URI L belp

base64Binary an array of bytes in base64-encoded format Bytes L belp

boolean Boolean value ("true", "false") Boolean p

Byte 8-bit integer number Int M bempt

Date Date Datetime M bempt

dateTime date and time Datetime M bempt

decimal decimal number Decimal T befmpt

double floating-point numbers double M befmpt

duration XML duration. Duration M bempt

ENTITY name of the XML entity String L epl

ENTITIES list of the XML entity names separated by a space Container L epl

Float floating-point numbers float M bempt

gDate date Datetime M bempt

gDay the day of the date Datetime M bempt

gMonth the month of the date Datetime M bempt

gMonthDay month and day of the date Datetime M bempt

gYear day of the date Datetime M bempt

gYearMonth year and month of the date Datetime M bempt

hexBinary the array of bytes, in the hexadecimal format Bytes L belp

ID the unique value of NCName in the XML document String L belp

IDREF reference to a unique value in the XML document String L belp

IDREFS list of the references to unique values in the XML document Container L belp

int 32-bit integer number Int M bempt

integer integer number decimal M bempt

language XML schema language specification (RFC 3066 or IETF BCP 47) String L belp

list array of values. Container L beilp

long 64-bit integer number int M bempt

Name name (according to the XML name specification). String L

NCName XML NCName value – see Namespaces in XML 1.1 (Second
Edition) (w3.org)

String L

negativeInteger negative integer number decimal M bempt

NMTOKEN XML NMTOKEN (i.e. letters, digits, "_", "-", ".", ":") String L

NMTOKENS list of NMTOKEN, separated by a space Container L

nonNegativeInteger the positive integer number and zero Decimal M bempt

nonPositiveInteger negative integer number and zero Decimal M belpw

normalizedString character string String L bempt

positiveInteger the positive integer number Decimal M bempt

QName XML QName String L belp

short 16-bit integer number int M bempt

string Character string. The named parameter %whiteSpace can only
have here a value of "replace", "collapse", or "preserve". The
default value of the %whiteSpace parameter is "preserve".

String L belp

time Time Datetime M bempt

token XML token (according to XML specification). String L

union union of more data types Any Eip

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 39 / 104

unsignedByte unsigned 8-bit integer int M bempt

unsignedLong unsigned 64-bit integer Decimal M bempt

unsignedInt unsigned 32-bit integer int M bempt

unsignedShort unsigned 16-bit integer int M bempt

Some other data types implemented in the X-definition are listed in the following table:

Table 8 - Other validation methods of data types implemented in X-definition (and not in XML schema)

Method name Description Result type Parameters

An alphanumeric string (only letters or numbers) String L

BNF(g, s) the value must match the rule name from the BNF Grammar g String -

contains(s) any string that contains s String -

containsi(s) any string that contains s regardless of upper/lower case. String -

country(s) String with country code (ISO 3166 alpha-2 or alpha-3) String L belp

countries(s) String with the list of country codes (ISO 3166 alpha-2 or alpha-3) Container Elp

currency currency code (three characters according to ISO 4217 code) Currency Ep

CHKID reference to a unique value – similar to IDREF in Table 4a, but the
occurrence of the referred value must already exist at this time

String -

CHKIDS list of values according to CHKID separated by white spaces. String -

dateYMDhms date and time corresponding to the mask "yyyyMMddHHmmss". Datetime M

domainAddr Internet domain address String Elp

dec the decimal number corresponding to XML schema “decimal" data
type. However, the decimal point can also be recorded as a
comma). This method is deprecated, use “decimal” instead.

Decimal T efmpt

emailAddr email address according to RFC822 (the deprecated name is
“email”)

EmailAddr L

emailDate date in the format form email (see RFC822). Datetime M

emailAddrList list of email addresses separated by commas or semicolons Container L

ends(s) the value must end with the string value in the parameter s. String -

endsi(s) the value must end with the string value s regardless of
upper/lower case.

String -

enum(s, s1, ...) the value must match one parameter from the list. Parameters s,
s1, ... must be strings.

String -

enumi(s, s1, ...) the value must match with one parameter from the list regardless
of the upper/lower case. Parameters s, s1, ... must be strings.

String -

eq(s) the value must be equal to the string s. String -

eqi(s) the value must equal the string s regardless of upper/lower case. String -

ipAddr Internet IPv4 or IPv6 address (see RFC 2818 and RFC 6125) IPAddr -

file the value must be a correct file path String L

gps GPS position (latitude, longitude[, altitude], [name]) GPSPosition -

ipAddr Internet address (IPv4, IPv6) IPAddr -

languages list of values separated by a space which are equal to an item
from the list of language codes 0according to XML schema
language specification (RFC 3066 or IETF BCP 47)

Container Elp

list(s1, s2, ...) the value must be equal to a parameter from the parameter list. String -

listi(s1, s2, ...) the value must be equal to a parameter from the parameters list,
regardless of the upper/lower case.

String -

MD5 An MD5 checksum (32 hexadecimal digits) Bytes Elp

NCNameList list of NCName values according to the specification of the XML
schema NCName. A separator is a white space.

String Elp

NCNameList(s) list of NCName values according to the specification of the XML
schema NCName. A list of characters that is used as a separator is
in the parameter s.

String Elp

X-definition 4.2 Language Description

40 / 104 Version: 4.2.2.26, Date: 2024-03-31

num value is any sequence of digits. String L

pic(s) the value must match the structure of the string s, where '9'
means any digit, 'a' means any alphabetic ASCII character, 'X' is
any alphanumeric (ASCII) character, and other characters must
match. Deprecated, use the regex method or the string method
with the parameter %pattern.

String Elp

price amount (decimal number) and currency name (3 capital letters) Price -

printableDate date in the usual “printable” format

(e.g.: "Mon May 11 23:39:07 CEST 2020")

Datetime L

QNameList the value must be a list of QName values according to the XML
specification. A separator is a white space.

Container Elp

QNameList(s) the value must be a list of QName values according to the XML
specification. A list of characters that is used as a separator is in
the parameter s.

Container Elp

QNameList(s) the value is the list of qualified names according to the XML
specification, and for each name, the namespace in the context of
the current element must be defined.

Container Elp

QNameURI the value must be a QName according to the XML specification,
and the namespace must be defined in the context of the current
element

String Elp

QNameURI(s) checks whether, in the context of the current element, there
exists the namespace URI corresponding to the value in the
argument s.

String Elp

regex (s) the value must match the regular expression s. The s must be a
regular expression according to Java.

RegexResult -

sequence allows you to describe a sequence of different values. Parameter
%item = [type1, type2, ...], describes the sequence of validation
methods.

Container L ielmp

SET stores the value of a table of unique values similar to the ID XML
schema type. However, it does not report an error if the value
already exists.

String -

SHA1 SHA1 checksum (40 hexadecimal digits) Bytes E

starts(s) the value must begin with the value of the string s. String -

startsi(s) the value must begin with the value of the string s regardless of
upper/lower case.

String -

uri the value must be a formally correct URI, as implemented in Java. String -

uriList a formally correct list of URIS, as implemented in Java. The
delimiter is a comma or white space.

String -

url the value must be a formally correct URI, as implemented in Java. String -

urlList the value must be formally correct URL list as it is implemented in
Java, the delimiter is a comma or whitespace

String -

xdatetime date and/or time of the corresponding ISO 8601 format (parses
also the variants, which do not support date in XML schema).

Datetime -

xdatetime(s) date and/or time corresponding to the mask s (see Table 1 -
Control characters in the date mask).

Datetime -

xdatetime (s, t) date and/or time corresponding to the mask s (see Table 1 -
Control characters in the date mask). The resulting value will
be formatted according to the mask t.

Datetime -

xdtype Checks if the value is a valid declaration of the implemented type

validation method (i.e. from the table Table 7 - Validation
methods of XML schema data types or this table)

Parser -

Table 9 - JSON validation methods

Method name Description Result type Parameters

Jboolean Boolean value ("true", "false") Boolean P

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 41 / 104

Jnumber an array of JSON number format Decimal M bempt

Jnull JSON null value ("null") Boolean P

Jstring any JSON string String L belp

Jvalue any of the values above Any -

4.1.14 Set of unique values (uniqueSet)

To ensure a value is unique within a part of the XML document the uniqueSet table which contains a set of these
unique values can be declared. The rows of a table are the unique values (i.e. they cannot be present more times
in the table). The implicit part of the table is an object that we call the “key". It describes the structure of values of
the rows of the table. The key may have one or more entries, which are set with the results of the validation
methods. The values of a key may be set step by step. For any part of the key, a validation method is defined. If a
validation method finds an error when it parses a value it is normally reported. Other errors are indicated by the
methods of uniqueSet tables. After the entries of a key are set with values (an entry can also be a null value) it can
be saved to a table with the method ID or SET. It is checked if the key already exists in the table, and if not, it is
stored as the next row of the table. If there is already a value of the key in the table, the method ID reports the
error that the key already exists in the table. However, the method SET doesn’t report this error. On the contrary,
the method IDREF checks whether the key exists in the table. If not, it reports an error that the key does not exist
in the table. Note that the key may be stored in the table later than when this method was invoked - the
unresolved references to a key are reported after the scope of validity of the table expires. In some cases, we
require that the key in the table already exists at the time the method was invoked. It allows the method CHKID,
which checks whether a key is stored already in the table at the time of the method call. The SET method is similar
to the ID method. It stores the key to the table. However, it does not report an error if the key already exists in
the table (i.e. the key may be stored more times, therefore the value must be unique). The methods ID, IDREF,
IDREFS, CHKID, SET, and CLEAR can be called on uniqueSet, object, or any of the key items. In both cases, it uses
the current value of the key.

The table of unique values is declared by writing "uniqueSet" followed by the table name, and a description of the
key. The key may have one or more items. Each entry of the key has a name and must be given the appropriate
validation method. For example:

 uniqueSet tab { first: int; second: string(5, 10); }

Sometimes we may request that an item has not been set, i.e. the key entry was null (this is, of course, also a
value). In this case, before the description of the type of entry you write the character "?":

 uniqueSet tab { first: int; second: ? string(5, 10); }

A question mark before the type has yet another meaning. Normally, the methods ID, IDREF, and CHKID use the
key value and leave the key value unchanged. However, if an entry was declared with a question mark, after usage
of the key it sets the key entry value to null (i.e. after you call one of the methods ID, IDREF, or CHKID the entry
value will be null).

The check process is invoked if you write the name of the table, then the character ".", and the name of an entry.
See the following example:

<xd:declaration> uniqueSet house{number: int; person: ? string; company: ? string} </xd:declaration>

<Street>
 <House xd:script="occurs +" number="house.number.ID() /* the key is stored into the table “house";
 entries "person" and “company" are still null */">
 <Person xd:script="occurs *" name="house.person.ID() /* save the key with entries “number” and
 "person", and "company" are still null */" />
 <Company xd:script="occurs *" name="house.company.ID() /* save the key with entries “number” and
 "company", and “person” are still null */" />
 </House>

 </Occupant xd:script="occurs *; finally house.IDREF() /* number and person or company */">
 House = "house.number"
 Person = "optional house.person()"
 Company = "optional house.company()"/>
</Street>

At any time, we can call the method CLEAR above a table. This method first checks whether in the table there are
unresolved references to a key and if so, the errors are reported. Then all rows in the table are deleted. If you do

X-definition 4.2 Language Description

42 / 104 Version: 4.2.2.26, Date: 2024-03-31

not call this method, it will be invoked automatically before the expiry of the object validity (if the table was
declared in the section xd:declaration, then this method is invoked at the end of the X-definition process).

If at some point we want to reset all key entries, we can call the method NEWKEY. This does not affect the
contents of the table, but it sets all key entries to null.

4.1.15 Set of unique values (“table”) without named entries

For the validation method, you can write just ID and IDREF, IDREFS, so as an XML schema type. Therefore, the
processor of X‑definition automatically generates one internal variable with the global table that has rows of
NCName data types. However, the user can declare his table with one not-named key entry and specify the data
type of values in the table. Such a table might be declared as follows:

<xd:declaration>
 uniqueSet number: int;
<xd:declaration>

<Houses>
 /* store into the table the key with the house number */
 <House xd:script="occurs +" Number="number.ID()/>

 /* The number must already be in the table */
 <House xd:script="occurs +" Number="number.IDREF()/>
</Houses>

4.1.16 Linking tables of unique values

Sometimes we need to link more tables. This is done so that we specify the parameter with the validation method
of a key entry from another table. Note that the reference to the entry from the other table means only taking
over the appropriate validation method. Its use is clear from the following example:

<xd:declaration>
 uniqueSet house{number: int; apartment: ?int; person: ? string; company: ? string}
 uniqueSet street {name: string; number: house. number;}
</xd:declaration>

<Town name="string()"></Town>
 <Street xd:script="occurs +" name="street.name()"></Street>
 <House xd:script="occurs +" number="house.number(street.number.ID())"/>
 <Person xd:script="occurs *" name="house.person.ID()"></Person>
 <Company xd:script="occurs *" name="house.company.ID()"></Company>
 </House>
 </Street>
</Town>

Processing the attribute "name" in the element "Street" sets the key entry "street.name". Processing the attribute
"number" in the element "house" sets the key entry "street.number". The key (i.e., the pair name, number) is
stored in the table "street", checks its uniqueness, and sets the key entry "house.number".

4.1.17 Template element

Sometimes it is useful to describe the element model as "one to one", in other words, all attribute values, text
values, or children including their occurrence are constant. In the construction mode, such an element is copied to
the result. This can be achieved by writing the word "template" into the X-script of the model of the element.
However, if at some point the text value starts with "$$$script:" the value is processed as the X-script. Example:

<elem xd:script = "template"
 attr1 = "abcd"
 attr2 = "$$$script: optional datetime ('yyyy/M/d'); create now (). toString ('yyyy/M/d') ">
 <child1/>
 <child2>Text1</child2>
 <child2>Text2</child2>
</elem>

This is the same as writing:

<elem xd:script = "required; create newElement()"
 attr1 = 'fixed 'abcd'; create newElement()"
 attr2 = "optional xdatetime('yyyy/M/d'); create.now().toString ('yyyy/M/d')">
 <child1 xd:script = "required; create newElement()" />
 <child2 xd:script = "required; create newElement()" />
 fixed 'text1'; create newElement()

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 43 / 104

 </child2>
 <child2 xd:script = "required; create newElement()" >
 fixed 'text2'; create newElement()
 </child2>
</elem>

Note: For the keyword "template" it is possible after the semicolon to add the "options trimText" or "options
noTrimText". If "trimText" is not set, all spaces, new lines, and tabs between elements are interpreted as literals
(i.e. string constants)!

4.1.18 X-script commands

The X-script command can either be the method call terminated with a semicolon or a statement block {similar to
the statement block of the declared method). The executive commands are placed between the curly brackets "{"
and "}". The return can be done with the command "return" the same as in a method declaration. The expressions
and executive commands are written similarly as in the language "Java" or "C" (including the compound
statement).

The syntax of statements is almost the same as in the language "Java". Implemented statements are:

the variable declaration statement (value types, however, must match the types in the X-script)

assignment statement

the method call statement

the statement "break"

the statement "continue"

the statement “do"

the statement “do"

the statement “for"

the statement "return"

the statement “switch"

the statement "throw"

the statement blocks "try" and "catch"

the statement "while"

A detailed description is beyond the scope of this text. The reader can find a description, for example, in a
description of Java programming language.

4.1.19 Implemented X-script methods

In the X-script a variety of implemented methods can be called. Some of them can only be used in some parts of
the X-script. The following tables list methods and result types. The parameter types are described in the
following way:

 AnyValue v, v1, v2, …

Datetime d

Element e, e1, e2, …

Container c, c1, c2, …

int m, n, n1, n2, …

float f, f1, f2, …

Object o

String s, s1, s2, …

Table 10 lists all implemented general methods in X-script.

Note many methods are implemented on different objects. These methods are described in tables Table 12 to Table 40 –
Methods of objects of the type uniqueSetKey

Method name Description Result type

The uniqueSetKey object you can get from the uniqueSet object (see uniqueSetKey

X-definition 4.2 Language Description

44 / 104 Version: 4.2.2.26, Date: 2024-03-31

method getActualKey). See also 4.1.2.30,

resetKey() Sets the value of the actual key of the uniqueSet table to the value

from this object.

Table 41 – Methods of objects of the type URI

Method name Description Result type

x = new URI(s) creates URI object x from the argument s (e.g. the string s may

describe a file or a http address.

URI

Table Mathematical methods are listed in Table 43 and Table 44.

Note many methods are implemented on different objects. These methods are described below.

Table 10 - General methods implemented in X-script

Method name Description Result type Where use

addComment(s) adds an XML comment with a value of s at the end of the
child list of the current element.

 element

addComment(n, s) adds an XML comment node with a value of s after node n. anywhere

addPI(s1, s2) adds the processing instruction at the end of the child list
of the current element. The target name is s1, data is s2.

 element

addPI(n, s1, s2) adds the processing instruction after node n. The target
name is s1, data is s2.

 anywhere

addText(s) adds a text node with a value of s to the current element. attribute, text
node, element

addText(e, s) adds a text node with the value of s to the child nodes of
element e.

 anywhere

bindSet(u[,u1…]) this method can be specified only in the “init” section of
the X-script of the model of Element. At the end of
processing the element where it was invoked, it sets to all
specified uniqueSet tables the value of the actual key
which was at init time (after the “finally” section).

 element

clearReports() clears all current (temporal) error reports generated by
the preceding validation method (used e.g. in onFalse
action).

 anywhere

cancel() forced end of the processing of X-definition anywhere

cancel(s) forced end of the processing of X-definitions and sets the
error message with text s.

 anywhere

defaultError() writes a default error message into a temporary report log
and returns the boolean value false. The error is XDEF515
Value differs from expected.

boolean attribute, text node

easterMonday(d) returns the date with Easter Monday for the year from the
date d

Datetime Anywhere

easterMonday(n) returns the date with Easter Monday for year n Datetime Anywhere

error(r) writes an error message with report r into a temporary
report log. The result is the Boolean value false.

boolean

always false

Anywhere

error(s) writes an error message with the text s into a temporary
report log. The result of the function is the Boolean value
false.

boolean

always false

Anywhere

error(s1, s2) writes an error message report created from s1 and s2 into
a temporary report log. The result is the Boolean value
false. The s1 parameter is the identifier of the error, and
the s2 is the error text.

boolean

always false

Anywhere

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 45 / 104

error(s1, s2, s3) writes an error message report created from s1 and s2 into
a temporary report log. The result of the function is the
Boolean value false. The s1 parameter is the identifier of
the error, the error text is s2, and s3 is a modifier with
parameters of text.

boolean

always false

Anywhere

errors() returns the current number of errors reported during
processing.

int attribute, text node

errorWarnings() returns the current number of errors reported during
processing.

int attribute, text node

format(s, v1, ...) returns string created from values of parameters v1, ...
according to the mask s (see method format in
java.lang.String).

String Anywhere

format(l, s, v1, ...) returns string created from values of parameters v1, ...
according to the region specified by Locale in parameter l
and mask s (see method format in java.lang.String).

String Anywhere

from() returns the Container corresponding to the current
context. The method can only be used in the "create"
action in the X-script element, the text value, or the
attribute. If the result is null, returns an empty Container.

Container create element

from(s) returns the Container created after the execution of the
XPath expression s in the current context. The method can
only be used in the "create" action in the X-script element,
the text value, or the attribute. If the result is null, returns
an empty Container.

Container create attribute

create element

create text node

from(e, s) returns the Container after the execution of the XPath
expression s in the element e. The method can only be
used in the "create" action in the X-script of an element,
the text value, or an attribute. If e is null, the result is an
empty Container

Container create attribute

create element

create text node

getAttr(s) returns the value of the attribute with the name s (from
the current element). If this attribute does not exist,
returns an empty string.

string element

getAttr(s1, s2) returns the value of an attribute with the local name s and
namespace s2 (from the current element). If this attribute
does not exist, returns an empty string.

string element

getAttrName() returns a string with the name of the current attribute. String all actions in the
X-script attributes

getDefaultZone() returns time zone ID of default zone or returns null if
default zone is not specified,

String Anywhere

getElement() the result is the current element. Element

element, text node

attribute

getElementName() name of the current element. String Anywhere

getElementLocalName() name of the current element. String attribute, text node

getElementText() returns a string with the concatenated text content of
nodes that are direct descendants of the current element.

String attribute, text node

getImplProperty(s) returns the value of the property from the current
X-definition that is named s. If the item does not exist,
return an empty string.

String attribute, text node

getImplProperty(s1, s2) returns the value of the property s1 of X-definition, whose
name is s2. If the appropriate X-definition or item does not
exist will return an empty string.

String attribute, text node

X-definition 4.2 Language Description

46 / 104 Version: 4.2.2.26, Date: 2024-03-31

getItem (s) returns the value of the items from the current context. String element, text node

attribute

getLastError() returns the last reported error report. Message element, text node

attribute

getMaxYear() returns the maximum allowed value of the year when
parsing the date.

int Anywhere

getMinYear() returns the minimum allowed value of the year when
parsing the date.

int Anywhere

getNamespaceURI() returns a string whose value is the namespace URI of the
current element. If the namespace URI does not exist,
returns an empty string.

String attribute, text node

getNamespaceURI(n) returns a string whose value is the namespace URI of the
node n (it can be either an element or attribute). If the
namespace URI does not exist, returns an empty string.

String attribute, text node

getNamespaceURI(s) returns a string whose value is a namespace URI matching
prefix s in the context of the current element. If the
namespace URI does not exist, returns an empty string.

String attribute, text node

getNamespaceURI(s, e) returns a string whose value is a namespace URI matching
prefix s in the context of the element e. If the namespace
URI does not exist, returns an empty string.

String attribute, text node

getNSUri(s, e) Returns namespace URI of given prefix s from the context
of element e

String Anywhere

getOccurrence() returns the current number of instances of the object. int Element

getParentContextElement() returns the element of the context of the parent of the
current element

Element Element

getParentContextElement(n) returns the element of the context of n - parent of the
current element

Element Element

getParsedBoolean() returns the Boolean value of the ParseResult (if the
previous X-script was read by a validation method).

Warning: this method must be called immediately after a
call to the validation method, for example, in the section
onTrue. If this condition is not met, then the result of the
method is not defined.

boolean only after the
method type-
checking

getParsedBytes() returns the value of a byte array of ParseResult (if the
previous X-script was a validation method).

Warning: this method must be called immediately after a
call to the validation method, for example, in the section
onTrue. If this condition is not met, then the result of the
method is not defined.

Bytes only after the
method type-
checking

getParsedDatetime() returns the value of Datetime from ParseResult (if the
previous X-script was a validation method).

Warning: this method must be called immediately after a
call to the validation method, for example, in the section
onTrue. If this condition is not met, then the result of the
method is not defined.

Datetime only after the
method type-
checking

getParsedDecimal() returns the value of a decimal number of ParseResult (if
the previous X-script was a validation method).

Warning: this method must be called immediately after a
call to the validation method, for example, in the section
onTrue. If this condition is not met, then the result of the
method is not defined.

Decimal only after the
method type-
checking

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 47 / 104

getParsedDuration() returns the value of Duration of ParseResult (if the
previous X-script was a validation method).

Warning: this method must be called immediately after a
call to the validation method, for example, in the section
onTrue. If this condition is not met, then the result of the
method is not defined.

Duration only after the
method type-
checking

getParsedFloat() returns the float value of ParseResult (if the previous
X-script was read by a validation method).

Warning: this method must be called immediately after a
call to the validation method, for example, in the section
onTrue. If this condition is not met, then the result of the
method is not defined.

float only after the
method type-
checking

getParsedInt() returns the int value of ParseResult (if the previous X-script
was read by a validation method).

Warning: this method must be called immediately after a
call to the validation method, for example, in the section
onTrue. If this condition is not met, then the result of the
method is not defined.

int only after the
method type-
checking

getParsedValue() returns an object with the parsed value of ParseResult (if
the previous X-script was read by a validation method).

Warning: this method must be called immediately after a
call to the validation method, for example, in the section
onTrue. If this condition is not met, then the result of the
method is not defined.

AnyValue only after the
method type-
checking

getParseResult() returns the ParseResult object from the validation section.
Note that the PrseResult object is valid only in the sections
“onTrue” and “onFalse”.

ParseResult only after the
method type-
checking

getQnameLocalpart(s) returns a string with a local name of the argument that is a
qname.

String attribute, text node

getQnamePrefix(s) returns a string with the prefix from s that is a qname.
Returns an empty string, if the argument is a qname or
does not have a prefix.

String attribute, text node

getQnameURI(s) returns a string whose value is a namespace URI matching
the qname s in the context of the current element. If the
namespace URI does not exist, returns an empty string.

String attribute, text node

getQnameURI(s, e) returns a string whose value is a namespace URI matching
the qname s in the context of the element e. If the
namespace URI does not exist, returns an empty string.

String attribute, text node

getRootElement() returns the root element of the current element. Element attribute, text
node, element

getSourceColumn() returns column of source position of processed node (if it
is not available returns 0)

int attribute, text
node, element

getSourceLine() returns a line of source position of the processed node (if
it is not available returns 0)

int attribute, text
node, element

getSourcePosition() returns the printable form of the source position of the
processed node (if it is not available returns an empty
string)

String attribute, text
node, element

getSpecialDates() returns the Container with the date values that are
permitted even if the year date is not in the allowed range.

Container attribute, text node

getSysId returns system ID of source position of processed node (if
it is not available returns an empty string)

String attribute, text
node, element

getText() returns a string with the value of a current attribute or a
text node.

String attribute text

X-definition 4.2 Language Description

48 / 104 Version: 4.2.2.26, Date: 2024-03-31

text of element

getTextContent() returns a string with the text content of the current
element and its descendants. Returns an empty string if no
text is available.

String text of element and
descendants

getTextContent(e) returns a string with the text content of the element e and
its descendants. Returns an empty string if no text is
available.

String Anywhere

getXDPosition() returns a string with the current X-position. String attribute, text
node, element

getXpos() returns the current position of the processed XML
document in XPath format.

String attribute, text
node, element

getUserObject() returns an external user object. Object attribute, text node

getVersionInfo() returns information about the version of the current
X-definition.

String attribute, text node

hasAttr(s) returns true if the current element has an attribute with
the name s.

boolean element

hasAttr(s1, s2) returns true if the current element has the attribute with
local name s1 and the namespace s2.

boolean element

IsCreateMode() returns true, if the current processing mode is the
construction mode.

boolean attribute, text node

isDatetime(s) the result is true when the date from the string s matches
the format according to ISO 8601 (i.e., the mask of "y-M-d
[TH: m: s[.S] [Z]] ").

boolean attribute, text node

isDatetime(s1, s2) the result is true when the date in the string s1 matches
the mask s2.

boolean attribute, text node

isLeapYear(d) returns true if the year from the given date d is a leap
year.

boolean anywhere

isLeapYear(n) returns true if the year n is a leap year. boolean anywhere

isNumeric(s) returns true when the string s contains only digits. boolean anywhere

isXPath2Supported() returns true if XPath2 implementation is available in
method xpath(s) and from(s)

boolean anywhere

isXQuerySupported returns true if XQuery implementation is available in
methods xquery(s).

boolean anywhere

insertComment(s) Insert the comment s before the actual node. element

insertComment(n, s) Insert comment s before node n. anywhere

insertPI(s1, s2) insert processing instruction before the actual element.
The target name is s1, data is s2.

 element

insertPI(n, s1, s2) Insert processing instruction before node n. The target
name is s1, data is s2.

 anywhere

insertText(s) Insert the text node s before the actual node. Note the
parent of the actual node must be an element!

 element

insertText(n, s) insert text node s before node n. Note the parent of the
node n must be an element!

 anywhere

newElement() creates a new element (the name is derived according to
the location, where the method was specified).

Element create

newElement(s) creates a new element named according to argument s. Element attribute, text node

newElement(s1,s2) creates a new element named according to argument s1
and the namespace s2.

Element attribute, text node

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 49 / 104

newElements(n) creates a Container with n new elements (the name is
derived according to the location, where the method was
specified).

Container create

newElements(n, s) creates a Container with the n new elements named by
the argument s.

Container attribute, text node

newElements(n,s1,s2) creates a Container with the n new elements named by
the argument s1

and the namespace s2.

Container attribute, text node

now() returns current date and time Datetime anywhere

occurrence() returns a number corresponding to the current number of
the occurrence of the element.

int element, text node

out(v) value v is converted to a string and is written on the
standard output

 anywhere

outln () the output of the new line to the standard output anywhere

parseBase64 (s) converts a string to an array of bytes If the string is not
Base64, then the method returns null.

Bytes anywhere

parseDate(s) converts the string s with a date in the ISO 8601 format to
Datetime value (i.e. according to the mask "yyyy-M-dTH:
m[: s][.S] [Z]"). If the string s does not date according to
ISO, then the method returns null.

Datetime attribute, text node

parseDate (s1, s2) converts the string s1 to Datetime according to the mask
in the s2 parameter. If the string is not a DateTime
according to ISO the method returns null.

Datetime attribute, text node

parseEmailDate(s) converts the string s with a date in the format of RFC822
to the Datetime value. If the date is not in the specified
format then the method returns null.

Datetime attribute, text node

parseFloat (s) converts the string to a float value If the string s is not a
float number, then the method returns null.

float attribute, text node

parseInt(s) converts the string s to an integer value If the string s is
not an integer number, then the method returns null.

int attribute, text node

parseDuration(s) converts the string s with a time interval in the format ISO
8601 to the Duration value. If the string s is not duration
according to ISO, then the method returns a value null.

Duration attribute, text node

parseHex(s) converts the string s to an array of bytes If the string is not
Base64, then the method returns null.

Bytes anywhere

pause() in the debug mode, write the information about actual
processing to the standard output. The program stops and
waits for a response from the standard input. If the answer
is "go", the program continues. Instead of "go", you can
specify other commands. The list of possible commands
will be printed by typing "?". If the debug mode is not set
this method is ignored.

 attribute, text node

pause(s) in the debug mode, print the information line and the
string s to the standard output. The program waits for a
response from the standard input. If the answer is "go",
the program continues. Instead of "go", you can specify
other commands. The list of possible commands will be
printed by typing "?".

 attribute, text node

printf(s, v1, ...) prints to the standard output stream the string created
from values of parameters v1, ..., according to the mask s
(see method printf in java.io.PrintStream).

 anywhere

printf(l, s, v1, ...) prints to the standard output stream a string created from anywhere

X-definition 4.2 Language Description

50 / 104 Version: 4.2.2.26, Date: 2024-03-31

values of parameters v1, ... according to the region
specified by Locale in parameter l and to the mask s (see
method printf in java.io.PrintStream).

removeAttr(s) removes an attribute with the name s from the current
element.

 element,

attribute, text node

removeAttr(s1, s2) removes an attribute with the local name s1 and the
namespace s2 from the current element.

 element,

attribute, text node

removeText() deletes the current (being processed) node with a text
value (i.e. a text or attribute node)

 attribute, text node

removeWhiteSpaces(s) all occurrences of the white spaces in the string are
replaced by a single space.

String anywhere

replace(s1, s2, s3) all occurrences of the string s2 in the string s1 are replaced
with the string s3.

String anywhere

replaceFirst(s1, s2, s3) the first occurrence of the string s2 in the string s1 is
replaced with the string s3.

String anywhere

returnElement(o) The result created from the argument o is an Element set
as the result of the X-definition process. The process of
X-definition will be finished and the method returns, as a
result, the created value.

setAttr(s1, s2) sets the value of the attribute named s1 in the current
element to s2.

 element,

attribute, text node

setAttr(s1, s2, s3) sets the value of an attribute with the local name s1 and
namespace s2 in the current element to s3.

 element,

attribute, text node

setElement(e) insert the element e at the current location of the
processed XML element (e.g. you may use it to add an
element in the action onAbsence).

 attribute, text
node, element

setMaxYear(n) sets the maximum allowed value of the year of the
validated DateTime.

 anywhere

setMinYear(n) sets the minimum allowed value of the year of the
validated DateTime

 anywhere

setParsedValue(v) stores the value v in the current parsed result.

Warning: this method must be called immediately after a
call to the validation method (i.e. in the section onTrue or
onFalse). If this condition is not met, then the result of the
method is not defined.

ParsedValue only after the
method type-
checking

setSpecialDates(c) sets the Container with the date values in the list of
permitted dates (even if the year date is not in the allowed
range).

 attribute, text node

setText(v) the string to which is converted the argument v replaces
the value of the current attribute or a text node.

 the text attribute

setUserObject(o) sets the external user object (Java object). attribute, text node

tail(s, n) returns the last n characters in the string String anywhere

toString(v) converts the value v in the standard manner to a character
string. The value v can be of type String, Integer, Float,
Date, Element, and List

String anywhere

toString(v, s) converts the value v according to mask s to a character
string. The value v can be of type int, float, or Datetime.
The value of s is a format mask. The mask (see 4.1.2) Types
of values of variables and expressions in X-script.

 anywhere

trace() in the debug mode it writes the information about actual attribute, text node

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 51 / 104

processing to the standard output. If the debug mode is
not set this method is ignored.

trace(s) in the debug mode it writes the information line and text s
to the standard output. If the debug mode is not set this
method is ignored.

 attribute, text node

translate(s1, s2, s3) replaces all occurrences of characters in the string s1
which matches one character from s2 with the character
at the corresponding position in the string s3. For example:

translate("bcr", "abc", "ABa") returns "Bar".

 If in the appropriate position in the string s2, there is not a
character then this character is skipped:

translate("-abc-", "ab", "BA")

 Returns the "BAc"

String anywhere

xcreate(c) a result is an object constructed by the model of element c
(used in the construction mode).

Element attribute, text node

xparse(s) parses an XML document from a string with the current
X-definition and returns the parsed value of the root
element. If the s is a string, describing an URL or a path to
a file, the parser uses a stream created from s. However, if
the string s begins with the character "<", then the parser
uses the value of s converted to a UTF-8 byte stream.

Element attribute, text node

xparse(s1, s2) parses an XML document from a string s1 with the
X-definition named s2 and returns the parsed value of the
root element. If the s1 is a string, describing an URL or a
path to a file, the parser uses a stream created from s1.
However, if the string s1 begins with the character "<",
then the parser uses the value of s converted to a UTF-8
byte stream.

Element attribute, text node

xparse(s, null) parses an XML document from a string s without an
X-definition. Returns the root element. If the s is a string,
describing an URL or a path to a file, the parser uses a
stream created from s. However, if the string s begins with
the character "<", then the parser uses the value of s
converted to a UTF-8 byte stream.

Element attribute, text node

xpath(s) returns a Container created after the execution of the
XPath expression s on the current element. If the actual
element is null, it returns an empty Container.

Container element,

attribute, text node

xquery(s) returns the Container created after the execution of the
xquery expression s on the current context. The method
can only be used in the "create" action in the X-script of an
element, the text node, or an attribute. If the actual
element is null it returns an empty Container.

This method is implemented only if the Saxon library is
available.

Container element,

attribute, text node

xquery(s, e) returns the Container created after the execution of the
XQuery expression s on the element e. If the actual
element is null, it returns an empty Container.

This method is implemented only if the Saxon library is
available.

Container attribute, text node

The following tables describe methods implemented by the individual object types. The type of an object is
expressed by the name of a type in the X-script (e.g. "int", "String", etc. – see 4.1.2 Types of values of variables
and expressions in X-script). A number is also assigned to each type (called “Type-ID”). The names of the types
and the corresponding identifiers in the X-script and the Java code by enumeration org.xdef.XDValueType is in the
following table).

X-definition 4.2 Language Description

52 / 104 Version: 4.2.2.26, Date: 2024-03-31

Table 11 - Names of the X-script types and the corresponding type ID

X-script name Type ID org.xdef.XDValueType name

boolean $BOOLEAN BOOLEAN

BNFGrammar $BNFGrammar BNFGRAMMAR

BNFRule $BNFRULE BNFRULE

Bytes $BYTES BYTES

char $CHAR CHAR

Container $CONTAINER CONTAINER

Currency $CURRENCY CURRENCY

Datetime $DATETIME DATETIME

Decimal $DECIMAL DECIMAL

Duration $DURATION DURATION

Element $ELEMENT ELEMENT

EmailAddr $EMAILADDR EMAILADDR

Exception $EXCPTION EXCEPTOIN

float $FLOAT FLOAT

GPS $GPS GPS

Input $INSTREAM INPUT

int $INT INT

NamedValue $NAMEDVALUE NAMEDVALUE

Object $OBJECT OBJECT

Output $OUTSTREAM OUTPUT

Parser $PARSER PARSER

ParseResult $PARSERESULT PARSERESULT

Price $PRICE PRICE

Regex $REGEX REGEX

RegexResult $REGEXRESULT REGEXRESULT

Report $REPORT REPORT

ResultSet $RESULTSET RESULTSET

Service $SERVICE SERVICE

Statement STATEMENT STATEMENT

String $STRING STRING

URI $URI URI

XmlOutStream $XMLWRITER XMLWRITER

XPathExpr $XPATH XPATH

XQueryExpr $XQUERY XQUERY

For each type listed in the previous tables, the following methods are implemented:

Table 12 - Methods of objects of all types

Method name Description Result type

x.toString() returns a string in the "viewable" shape of the value x. String

typeName(v) returns the name of the type of v. String

valueType(v) returns Type-ID of v. Int

Table 13 - Methods of objects of the type BNFGrammar

Method name Description Result type

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 53 / 104

BNFGrammar x construction of BNF grammar object x is recorded in the element

<xd:BNFGrammar name="x">

Text of BNF grammar specification

see 2.12 BNF grammar in X-definition

BNFGrammar

BNFGrammar x construction of BNF grammar object x, which is an extension of the

grammar g, is recorded in the element

<xd:BNFGrammar name="x" extends="g">

see 2.12 BNF grammar in X-definition

BNFGrammar

x.parse(s) returns a parsed value of the attribute of the text node following the

rule with the grammar of x

ParseResult

x.parse(s1, s2) returns a value of the parsed string s2 according to the rule s1 from

the grammar x.

ParseResult

x.rule(s) returns the rule from the grammar x. BNFRule

Table 14 - Methods of objects of the type BNFRule

Method name Description Result type

x.parse () returns a parsed value of the current attribute of the text node by

grammar rule x

ParseResult

x.validate(s) returns true if string s fits rule x. Boolean

Table 15 - Methods of objects of the type Bytes

Method name Description Result type

x = new Bytes (n) returns an array of bytes of x of size n. All bytes are set to 0. Bytes

x.add(n) adds the value n after the last item in the array of bytes x.

x.clear() clears the array of bytes x.

x.getAt(n) Returns n-th item of the array x (the index of the first item is 0). Int

x.insert(n1, n2) inserts a byte n2 before the n1-th item of x (the index of the first item

is 0).

x.remove(n) removes the n-th item from the array of bytes x and returns the

original value (the index of the first element is 0).

Int

x.setAt (n1, n2) sets the value of the n2 to the n1-th item of the byte array x (the index

of the first item is 0).

x.toBase64() returns a string with the value of the byte arrays in Base64-encoded

format.

String

x.toHex() returns a string with the value of the array of bytes in the hexadecimal

format.

String

Table 16 - Methods of objects of the type Currency

Method name Description Result type

x = new Currency(s) creates object Currency x with currency code (s is a string with ISO 4217

currency code).

Currency

x.currencyCode() returns the string with ISO 4217 code from the Currency object x.

Table 17 - Methods of objects of the type Container

Method name Description Result type

x = new Container() creates an empty Container x. Container

x.addItem(o) adds the object o to the end of the sequence part of the Container x.

x.getElement() returns the first XML element found in the sequence part of the

Container x (or returns null if the does not element exist).

Element

X-definition 4.2 Language Description

54 / 104 Version: 4.2.2.26, Date: 2024-03-31

x.getElement(n) returns the n-th XML element found in the Container x (or returns null if

such element does not exist).

Element

x.getElements () returns the new Container with the XML elements found in Container x. Container

x.getElements (s) returns the new Container with the XML elements with the name s

found in Container x.

Container

x.getItemType(n) returns the type-ID of the n-th item in the Container x. Int

x.getLength() returns the number of the items in the sequential part of Container x. int

x.getNamedItem(s) returns the value of a named item in the mapped part of Container x. AnyValue

x.getNamedString(s) returns the value of the named item s in the mapped part of Container x

as a string.

String

x.getText() returns a string concatenated from the string items in the sequential

part of Container x.

String

x.getText(n) returns a string with the n-th item of type string in the sequential part of

Container x.

String

x.hasNamedItem(s) returns true if Container x has a named item with the name s. Boolean

x.getNamedItems() Returns Container with the list of named items of Container x. Container

x.isEmpty() returns true if Container x has no items. Boolean

x.item(n) returns the n-th item in the Container x. AnyValue

x.removeItem(n) deletes the n-th element of the Container x.

x.removeNamedItem(s) deletes a named item with the name s in Container x.

x.setNamedItem(v) stores named item in the Container x.

x.setNamedItem(s, v) creates a named item with the name s and the value v in Container x.

x.sort() returns the ascending sorted sequential part of Container x (according to

the compareTo method on the items).

Container

x.sort(s) returns the ascending sorted sequential part of Container x. The result of

the XPath expression s is applied as a key for the XML elements.

Container

x.sort(s, b) returns the sorted sequential part of Container x. The direction of the

sort is according to the Boolean argument b (true for ascending and false

for the descending sort). The result of the XPath expression s is applied

as a key for the XML elements.

Container

x.toElement() creates an element from Container x. Element

x.toElement(s) creates an element with the name s from Container x. Element

x.toElement(s1, s2) creates an element with the name s2 and namespace s1 from Container

x.

Element

Table 18 - Methods of objects of the type Datetime

Method name Description Result type

x = new Datetime (s) creates an object x from the string s, which must be in the form of ISO8601. Datetime

x.addDay(i) adds to the date x the number of days i (i can even be negative, then the

days will subtract from x) and returns a new value

Datetime

x.addHour(i) adds to the date x the number of hours i (i can even be negative, then the

hours will subtract from x) and returns a new value

Datetime

x.addMillisecond(i) adds to the date x the number of milliseconds i (i can even be negative, then

the milliseconds will subtract from x) and returns a new value

Datetime

x.addMinute(i) adds to the date x the number of minutes i (i can even be negative, then the

minutes will subtract from x) and returns a new value

Datetime

x.addMonth(i) adds to the date x the number of months i (i can even be negative, then the

months will subtract from x) and returns a new value

Datetime

x.addNanosecond(n) adds to the date x the number of nanoseconds i (i can even be negative,

then the nanoseconds will subtract from x) and returns the new value

Datetime

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 55 / 104

x.addSecond(i) adds to the date x the number of seconds i (i can even be negative, then the

seconds will subtract from x) and returns a new value

Datetime

x.addYear(i) adds to the date x the number of years i (i can even be negative, then the

years will subtract from x) and returns a new value

Datetime

x.getDay() returns the day of the date Int

x.getFractionalSecond() returns the value of seconds of date x including the fractional part of

seconds

Float

x.getHour() returns the hour of a date x Int

x.getMillisecond() returns the number of milliseconds of the date x since the beginning of the

day

Int

x.getMinute() returns the minutes from the date x since the beginning of the day Int

x.getMonth() returns the month from a date x (January is 1) Int

x.getNanosecond() returns the number of nanoseconds of the date x since the beginning of the

day

int

x.getSecond() returns the seconds of the date x since the beginning of the day int

x.getWeekDay() returns the day of the week from date x (1 is Sunday, 7 is Saturday) int

x.getYear() returns the year from a date x int

x.getZoneName() returns the name of the time zone of the date x. String

x.getZoneOffset() returns the offset of the time zone of the date x to the Prime Meridian, in

milliseconds

int

x.isLeapYear() returns true if the year x is a leap year. boolean

x.lastDayOfMonth() returns the last day of the month of a date x. int

x.setDay(i) sets the day i to the date x and return a new value Datetime

x.setDaytimeMillis(i) sets the time to the date x according to the number of milliseconds i in the

argument i and returns a new value

Datetime

x.setHour(i) sets the hour i to the date x and returns a new value Datetime

x.setMillisecond(i) sets the millisecond i to the date x and returns a new value Datetime

x.setMinute(i) sets the minute i to the date x and returns a new value Datetime

x.setMonth(i) sets the month i to the date x and returns a new value (January is 1) Datetime

x.setSecond(i) sets the second i to the date x and returns a new value Datetime

x.setYear(i) sets the year i to the date x and return a new value Datetime

x.setZoneName(s) sets the name of the time zone in the date x on s and returns a new value Datetime

x.setZoneOffset(i) sets the offset for the time zone in the date (i are milliseconds) and returns

a new value

Datetime

x.toMillis() returns an integer value that corresponds to the number of milliseconds

since January 1. January 1970

int

x.toString(s) returns the character string with a date according to the mask s String

Table 19- Methods of objects of type Duration (time interval)

Method name Description Result type

x = new Duration(s) the constructor of the Duration object. Creates an object based on the

string, which must be in ISO8601 format

Duration

x.getDays() returns the number of days in the interval from x. int

x.getEnd() returns the date of the end of the interval from x. Datetime

x.getFractionalSecond() returns the number of seconds including the fractional part of the

interval of x.

float

x.getHours() returns the number of hours from the interval of x int

x.getMinutes() returns the number of minutes from the interval of x int

x getMonths() returns the number of months from the interval of x int

X-definition 4.2 Language Description

56 / 104 Version: 4.2.2.26, Date: 2024-03-31

x.getNextDate() returns the next date and time from the interval of x Datetime

x.getRecurrence() returns the number of times of the interval from x int

x.getSeconds() returns the number of seconds from the interval of x int

x.getStart() returns the starting date and time from the interval of x Datetime

x.getYears() returns the number of years of the interval of x. float

Table 20 - Methods of objects of the type Element

Method name Description Result type

x = new Element (s) the constructor of Element. Creates new Element with the name s. Element

x = new Element(s1, s2) the constructor of Element. Creates a new element with the namespace

s1 and the name s2.

Element

x.addElement(e) adds the element e at the end of the list of child nodes of the element x.

If x is the root element, it will produce an exception

x.addText(s) adds a text node with the value s at the end of the list of child nodes of

the element x. If x is the root element of the XML document it will

produce an exception

x.getAttribute(s) returns the value of the attribute s in the element x. If the attribute

does not exist, it returns an empty string.

String

x.getAttributes() Returns container with attributes as a list of named values. Container

x.getAttribute(s1, s2) returns a value of the attribute with the local name s2 and the

namespace s2 from the element x. If the attribute does not exist, it

returns an empty string.

String

x.getChildNodes() returns the Container with a list of the child nodes of the element x. Container

x.getNamespaceURI() returns a string with the namespace URI of the element x. String

x.getTagName() returns the qualified name of the element x. String

x.getText() returns the string with the concatenated text of the element x. String

x.hasAttribute(s) returns true if the element x has an attribute with the name s boolean

x.hasAttributeNS(s1, s2) returns true if the element x has an attribute with the name s2 and the

namespace s1.

boolean

x.isEmpty() returns true if the element x has no child nodes and attributes. boolean

x.setAttribute(s1, s2) sets the attribute with the name of s1 and s2 value in the element x

x.setAttribute(s1, s2, s3) sets the attribute with the namespace of s1 and the name s2 and the

value s3 in the element x

x.toContainer() returns the Container that was created from the element x. Container

x.toString(b) returns the string that was created from the element x. If b is true, then

the string is an indented form of the element x.

String

Table 21 - Methods of objects of the type EmailAddr

Method name Description Result type

x = new EmailAddr(s) the constructor of the EmailAddr object with the given email address s

(the parameter must be in the form according to RFC 5321).

EmailAddr

Table 22 - Methods of objects of the type Exception

Method name Description Result type

x = new Exception (s) creates an Exception with the message s Exception

x=new Exception(s1,s2) creates an Exception with the report ID s1 and message text s2. Exception

x=new Exception(s1,s2, s3) creates an Exception with the report ID s1 and message text s2 and

modification parameters in the string s3.

Exception

x.getReport() returns a report message from the Exception x Report

x.getMessage() returns a message string from the Exception x String

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 57 / 104

Table 23 - Methods of objects of the type GPSPosition

Method name Description Result type

x = new GPSPosition(f1,f2) the constructor of GPSPosition with the latitude in degrees from the

parameter f1 and the longitude in degrees from the parameter f2.

GPSPosition

X = new

GPSPosition(f1,f2,s)

the constructor of GPSPosition with the latitude in degrees from the

parameter f1, the longitude in degrees from the parameter f2, and the

name of the position from the string from parameter s.

GPSPosition

x = new

GPSPosition(f1,f2,f3)

the constructor of GPSPosition with the latitude in degrees from the

parameter f1, the longitude in degrees from the parameter f2, and

altitude in meters from the parameter f3.

GPSPosition

x = new

GPSPosition(f1,f2,f3, s)

the constructor of GPSPosition with the latitude in degrees from the

parameter f1, the longitude in degrees from the parameter f2, and

altitude in meters from the parameter f3, and the name of the position

from the string from parameter s.

GPSPosition

x. altitude() returns altitude in meters or, if it was not specified, 637650.0 (the

Earth's radius in meters used in calculations as the diameter of the

planet).

float

x.distance(p) Returns the distance to the GPSPosition p in meters, The Earth radius

used in the HaverSine formula is 6376500.0 meters. The altitude is

ignored in the calculation.

float

x.latitude() returns latitude in degrees (i.e. a float number in the range -90.0 .. 90.0). float

x. longitude() returns latitude in degrees (i.e. a float number in range -180.0 .. 180.0). float

x.name() returns the name of the location or returns null if it was not specified. String

Table 24 - Methods of objects of the type Input

Method name Description Result type

x = new Input (s) creates an input stream according to the argument s. Input

x = new Input(s, b) creates an input stream according to the argument s. If b is true, it will

be read in XML format.

Input

x = new Input(s1, s2) creates an input stream by the argument s1. Argument s2 specifies the

name of the encoding table.

Input

x=new Input(s1, s2, b) creates an input stream by the argument s1. Argument s2 specifies the

name of the encoding. If argument b is true, it will be read in the XML

format

Input

x.eof() returns true if the Input x is at the end Boolean

x.readln() reads a line of Input. String

Table 25 - Methods of objects of the type IPAddr

Method name Description Result type

x = new IPAddr(s) creates an Internet address from the argument s (version IPV4 or IPV6). IPAddr

Table 26 - Methods of objects of the type Locale

Method name Description Result type

x = new Locale (s) creates a Locale object for the given language s (the lowercase tho letter

ISO 639 language code).

Locale

x = new Locale(s1, s2) creates a Locale object for the given language s1 (the lowercase tho

letter ISO 639 language code) and s2 (the uppercase two-letter ISO 3166

country code).

Locale

x = new Locale(s1, s2, s3) creates a Locale object for the given language s1 (the lowercase tho

letter ISO 639 language code), s2 (the uppercase two-letter ISO 3166

country code), and s3 (the string with the vendor browser-specific code).

Locale

X-definition 4.2 Language Description

58 / 104 Version: 4.2.2.26, Date: 2024-03-31

Table 27 - Methods of NamedValue objects

Method name Description Result type

x = new NamedValue (s, v) creates a named value x with the name s and the value v. NamedValue

x.getName() returns the name of a named value x. String

x.getValue() returns the value of a named value x. AnyValue

x.setName(s) sets the name s to a named value x.

Table 28 - Methods of objects of the type Output

Method name Description Result type

x = new Output (s) creates an output stream according to the argument s. Output

x = new Output(s, b) creates an output stream according to the argument s. If b is true, it will

be written in XML format.

Output

x = new Output(s1, s2) creates an output stream by the name of s1 and the code page s2. Output

x = new Output(s1, s2, b) creates an output stream by the name of s1 and the code page s2. If b is

true, it will be written in XML format

Output

x.error(s) writes an error record with message s.

x.error(s1, s2) writes an error record with message ID s1 and the message string s2.

x.error(s1, s2, s3) writes an error record with message ID s1, the message string s2, and

modification s3.

x.getLastError() returns the last written error record. Report

x.out(s) writes the text s to the x.

x.outln() writes a new line to the x.

x.outln(s) writes a new line with the text s to x.

x.printf(s, v1, ...) prints to the x a string created from values of parameters v1, ...

according to the mask s (see method printf in java.io.PrintStream).

x.printf(l, s, v1, ...) prints to the x a string created from values of parameters v1, ...

according to the region specified by Locale in parameter l and the mask s

(see method printf in java.io.PrintStream).

x.putReport(r) writes the Report r to x.

Table 29 - Methods of objects of the type ParseResult

Method name Description Result type

x = new ParseResult(s) creates a ParseResult value x from the string. ParseResult

x.booleanValue() returns the boolean value from x. Boolean

x.bytesValue() returns an array from x. Bytes

x.matches() returns true if the x does not contain errors. Otherwise, it returns false boolean

x.datetimeValue() returns a Datetime value from x. Datetime

x.durationValue() returns a Duration value from x. Duration

x.decimalValue() returns a Decimal value from x. Decimal

x.error(s) sets the error message s to x.

x.error(s1, s2) sets the error Id s1 in the message s2 to x,

x.error(s1, s2, s3) sets the error Id s1 and the message s2 modified by s3 to x.

x.floatValue() returns a float value from x. Float

x.getError() returns an error message from x. Report

x.getParsedString() returns the parsed string from x. String

x.getValue() returns the parsed value from x. AnyValue

x.setParsedString(s) sets s as the parsed value to x.

x.setValue (v) sets the parsed value v in x.

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 59 / 104

Table 30 - Methods of objects of the type Price

Method name Description Result type

x = new Price(d, s) creates a Price object x with amount from the decimal number

parameter d and code ISO 4217 from the String parameter s.

Price

x.amount() returns a decimal number of the amount of the given currency. Decimal

x.currency() returns a string with ISO 4217 currency code.

x.display() returns a string with a value in the ISO 4217 format. String

x.fracionDigits() returns an integer with the recommended number of decimal places for

the given currency according to ISO 4217 or returns -1 if it is not

specified.

int

Table 31 - Methods of objects of the type Regex

Method name Description Result type

x = new Regex(s) creates a regular expression x from s (Java format of regular expression). Regex

x.getMatcher(s) returns the RegexResult created by the regular expression x from the

string s.

RegexResult

x.matches(s) returns true if the regular expression x has met the string s. Boolean

Table 32 - Methods of objects of the type RegexResult

Method name Description Result type

x.end(n) returns the end index of the group n from x. Int

x.group(n) returns a string from the group n from x. String

x.groupCount() returns the number of groups in x. Int

x.matches() returns true if the result of regular expression x has been met. Boolean

x.start(n) returns the initial index of the group n in x. Int

Table 33 - Methods of objects of the type Report

Method name Description Result type

x = new Report (s) creates a report with the message s. Report

x = new Report(s1, s2) creates a report with the ID s1 and the message s2. Report

x = new Report(s1, s2, s3) creates a report x with the ID s1, message s2 modified with s3. Report

x.getParameter(s) returns a string with the value of modification parameter s from the

report x.

String

x.setParameter(s1, s2) returns the new Report created from x where the modification

parameter s1 is set to s2.

Report

x.setType(s) returns a new Report where the type of report is set to the value s. The

value of s must be one of:

"E" … error

"W" … warning

"F" … fatal error

"I" … information

"M"... message

"T" … text

Report

Table 34 - Methods of objects of the type ResultSet

Method name Description Result type

x.close() closes the ResultSet x.

x.closeStatement() closes the statement associated with the ResultSet x.

x.getCount() returns the number of entries in the actual position of x. Int

X-definition 4.2 Language Description

60 / 104 Version: 4.2.2.26, Date: 2024-03-31

x.getItem() returns the current entry in the ResultSet x as a string. String

x.getItem(s) returns the entry named s from the current position of x. String

x.hasItem(s) returns true if the named entry s exists in the current position of x. boolean

x.hasNext() returns true if there is another row in the ResultSet x. boolean

x.isClosed() returns true if the ResultSet x is closed. boolean

x.next () sets the next row in the ResultSet x and returns true, if there is one. boolean

Table 35 - Methods of objects of the type Service

Method name Description Result type

x=new Service(s1,s2,s3,s4) creates object x providing access to a database. The s1 parameter is the

string defining the type of database interface (e.g., "JDBC"), s2 is the

database URL, s3 is a user name and s4 is a password.

Service

x.close() close the database x.

x.commit() performs commit operation on the database x

x.execute (s1, ...) performs the command s1 with parameters s2, s3, ... Returns true if the

command was performed.

boolean

x.hasItem(s1, ...) returns true when the item defined by parameters exists. boolean

x.isClosed() returns true if the database x is closed. Boolean

x.prepareStatement() prepares and returns a statement on database x. Statement

x.query(s1, s2) executes a query in a database x and returns the ResultSet object. ResultSet

x.queryItem(s1, s2, s3) executes a query in a database x and returns a string with the item s3. String

x.rollback() executes a rollback in the database x.

x.setProperty(s1, s2) sets the property s1 to the value of s2 in a database x. Returns true, if

the setting has taken place.

Boolean

Table 36 - Methods of objects of the type Statement

Method name Description Result type

x.close() closes the statement x.

x.execute (s1, ...) executes the statement s1, ... and returns true if it has been executed. Boolean

x.hasItem(s1, ...) returns true if there exists an item according to parameters s1, ... Boolean

x.isClosed() returns true when statement x has been closed. boolean

x.query(s1, ...) executes a query with parameters s1, ..., and returns a ResultSet with

the result.

ResultSet

x.queryItem (s1, s2, ...) executes a query on item s1, with parameters s2, and returns a ResultSet

with the result.

ResultSet

Table 37 - Methods of the type String

Method name Description Result type

x.charAt(n) Get character from the string x at position n char

x.contains(s) returns true if the string x contains a string s. Boolean

x.containsi(s) returns true if the string x contains a string regardless of upper/lower

case.

Boolean

x.cut(n) truncates the string x to the maximum length n. String

x.endsWith(s) returns true if the string x ends with a string s. Boolean

x.endsWithi(s) returns true if the string x ends with a string s regardless of upper/lower

case.

Boolean

x.equals(s) returns true if the string x has the same value as s. Boolean

x.equalsIgnoreCase(s) returns true if the string x has the same value as s ignoring the case. Boolean

x.getBytes() Returns an array of bytes that is created from the string x (uses the Bytes

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 61 / 104

current system encoding)

x.getBytes(s) returns an array of bytes that is created from the string s (according to

the code page that is named s)

Bytes

x.indexOf() returns the position of the occurrence of the string s in the string x. The

position starts from 0, and if the s string does not exist in the string x, it

returns -1.

Int

x.indexOf(s, n) returns the position of the occurrence of the character string s in the

string x starting with position n. The position starts from 0, and if the

string s does not exist in the string x after position n, it will return -1.

Int

x.isEmpty() returns true if string s is empty. boolean

x.lastIndexOf(s) returns the position of the last occurrence of the string s in the string x.

If the string is not found, it returns -1.

Int

x.lastIndexOf(s, n) returns the position of the last occurrence of a string s in the string x

starting from the position n. If the string is not found, it returns -1.

int

x.length() returns the number of characters in the string x. Int

x.startsWith(s) returns true if the string x starts with the string s. boolean

x.startsWithi(s) returns true if the string x starts with the string s without respect to

upper/lower case.

boolean

x.substring(n) returns part of the string x beginning from position n to the end. String

x.substring(n1, n2) returns part of the string x starting from position n1 to position n2. String

x.toLower() returns the string created from x where all uppercase letters in string x

are replaced with lowercase letters.

String

x.toUpper() returns the string created from x where all lowercase letters in string x

are replaced with uppercase letters.

String

x.trim() returns a string in which all-white spaces at the beginning and end of the

string x are removed.

String

Table 38 – Methods of objects of the type Telephone

Method name Description Result type

x = new Telephone(s) creates a new Telephone object x from the string in the parameter s

(a valid form of a telephone number).
Telephone

Table 39 – Methods of objects of the type uniqueSet

Method name Description Result type

the instance of a uniqueSet object is created by the

declaration statement. See 4.1.2.29.

uniqueSet

x.CHKID() checks if the parsed value already exists as an entry in the table x. If

not, an error is reported.

ParseResult

x.CHKIDS() checks if all parsed values from the list (separator is whitespace)

already exist in an entry in table x. If not, an error is reported.

ParseResult

x.ID() sets the parsed value to table x. If the value already exists an error is

reported

ParseResult

x.IDREF() checks if the parsed value exists a value in an entry in table x. If not,

an error is reported either when the scope of x ends or when the

method x.CLEAR() has been invoked (so the occurrence of parsed

value may be set after this method was invoked).

ParseResult

x.IDREFS() Checks if all parsed values from the list (separator is whitespace)

already exist as an entry in table x. I. If not, an error is reported

either when the scope of x ends or when the method x.CLEAR() has

been invoked (so the occurrence of parsed value may be set after

this method is invoked).

ParseResult

x.SET() sets the parsed value to table x. If the value already exists in the ParseResult

X-definition 4.2 Language Description

62 / 104 Version: 4.2.2.26, Date: 2024-03-31

table an error is NOT reported! (i.e. the value may be set more

times)

x.CLEAR() reports error messages if in table x are unresolved references (by

methods IDREF and IDREFS). After errors are reported all entries of

the table x are cleared.

x.checkUnref) reports error messages if in the table x are items that are not

referred to in the scope where the method is invoked.

x.getActualKey() returns the value of the key of the last saved item. uniqueSetKey

x size() returns the number of items in the x. Int

x.toContainer() returns Container with items created from items in x. Container

Table 40 – Methods of objects of the type uniqueSetKey

Method name Description Result type

The uniqueSetKey object you can get from the uniqueSet object (see

method getActualKey). See also 4.1.2.30,

uniqueSetKey

resetKey() Sets the value of the actual key of the uniqueSet table to the value

from this object.

Table 41 – Methods of objects of the type URI

Method name Description Result type

x = new URI(s) creates URI object x from the argument s (e.g. the string s may

describe a file or a http address.

URI

Table 42 – Methods of objects of the type XmlOutStream

Method name Description Result type

x = new XmlOutStream(s) creates an instance of the XmlOutStream object x according to

argument s. The s may describe a file.

XmlOutStream

x.setIndenting(b) if b is true, the writing is done with indentation.

x.writeElementStart(e) writes the start of an element e (name, attributes).

x.writeElementEnd() writes the end of the actual element.

x.writeElement(e) writes the element e.

x.writeText(s) writes the text s.

x.close() Closes the writer.

4.1.20 Mathematical methods

In the X-script it is possible to use the mathematical methods from the library's "java.lang.Math". These methods
are implemented both for the X-script type "float" and "int", which, if necessary, converts it to "float". The result
is either a "float" or "int" depending on the type of method. Note that the type "int" in the X-script is always
implemented as the Java "long" and the "float" type is always implemented as the Java "double".

Table 43 - Methods of mathematical functions (taken from the class java.lang.Math)

Method name Description Result type

abs(x) see method java.lang.Math.abs int or float

acos(x) see method java.lang.Math.acos Float

asin(x) see method java.lang.Math.asin Float

atan(x) see method java.lang.Math.atan Float

atan2(x, y) see method java.lang.Math.atan2 Float

cbrt(x) see method java.lang.Math.cbrt Float

ceil(x) see method java.lang.Math.ceil Float

cos(x) see method java.lang.Math.cos Float

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 63 / 104

cosh(x) see method java.lang.Math.cosh Float

exp(x) see method java.lang.Math.exp Float

expm1(x) see method java. lang.Math.expm1 Float

floor(x) see method java. lang.Math.floor Float

hypot(x, y) see` method java. lang.Math.hypot Float

IEEERemainder(x, y) see method java.lang.Math.IEEERemainder Float

log(x) see method java.lang.Math.log Float

log10 (x) see method java.lang.Math.log10 Float

log1p(x) see method java.lang.Math.log1p Float

max(x, y) see method java.lang.Math.max float or int

min(x, y) see method java.lang.Math.min float or int

pow(x, y) see method java.lang.Math.pow Float

rint(x) see method java.lang.Math.rint Float

round(x) see method java.lang.Math.round Int

signum(x) see method java.lang.Math.signum Float

sin(x) see method java.lang.Math.sin Float

sinh(x) see method java.lang.Math.sinh Float

sqrt(x) see the method java.lang.Math.sqrt Float

tan(x) see method java.lang.Math.tan Float

tanh(x) see method java.lang.Math.tanh Float

toDegrees(x) see method java.lang.Math.toDegrees Float

toRadians(x) see method java.lang.Math.toRadians Float

ulp(x) see method java.lang.Math.ulp Float

For working with the type Decimal (the value is internally implemented as java.math.BigDecimal) the available
methods in the X-script are:

Table 44 - Methods of mathematical functions (taken from java.math.BigDecimal)

Method name Description Result type

x = decimalValue(v) constructor; v can be int, double, String, or Decimal. Decimal

abs(x) see java.math.BigDecimal.abs Decimal

 add(x, y) see java math.BigDecimal.add Decimal

 compare(x, y) see java.math.BigDecimal.compare Int

divide(x, y) see java.math.BigDecimal.divide Decimal

 equals(x, y) see java.math.BigDecimal.equals Boolean

intValue(x) see java.math.BigDecimal.intValue Int

floatValue(x) see java.math.BigDecimal.floatValue Float

max(x, y) see java.math.BigDecimal.max Decimal

min(x, y) see java.math.BigDecimal.min Decimal

movePointLeft(x, n) see java.math.BigDecimal.movePointLeft Decimal

movePointRight(x, n) see java.math.BigDecimal.movePointRight Decimal

multiply(x, y) see java.math.BigDecimal.multiply Decimal

negate(x) see java.math.BigDecimal.negate Decimal

plus(xy) see java.math.BigDecimal.plus Decimal

pow(x, n) see java.math.BigDecimal.pow Decimal

remainder(x) see java.math.BigDecimal.remainder Decimal

round(s) see java.math.BigDecimal.round Decimal

X-definition 4.2 Language Description

64 / 104 Version: 4.2.2.26, Date: 2024-03-31

scaleByPowerOfTen(x, n) see java.math.BigDecimal.scaleByPowerOfTen Decimal

setScale(x, n) see java.math.BigDecimal.setScale Decimal

stripTrailingZeros(x) see java.math.BigDecimal.stripTrailingZeros Decimal

subtract(x, y) see java.math.BigDecimal subtract Decimal

ulp(x) see java.math.BigDecimal.ulp Decimal

4.1.21 External methods

In addition to the implemented methods and declared methods, it is possible to call Java external methods. The
external method must be declared as public and static. These methods must meet certain conventions. There are
three ways of passing parameters to external methods:

a) External methods with parameters that correspond to the list of parameters of the calling method in the
X-script take the form of a usual static method. The types of values of parameters are determined by
the table below:

Table 45 - Value types passed to external Java methods

Name of type in the X-script The type passed to the external method

Boolean logical value (java.lang.boolean)

Datetime date and time (java.util.Calendar)

Float floating point number (java.lang.double)

Int integer (java.lang.long)

Regex compiled regular expression (java.util.regex.Pattern)

RegexResult result of the regular expression (java.util.regex.Matcher)

String character string (java.lang.String)

Element element (org.w3c.dom.Element)

Bytes byte arrays (java.lang.byte[])

Container (org.xdef.XDContainer)

An example of external methods in Java:

public static boolean tab(String tabName, String colName, String value) {
...
}

public static void error (int code) {
...
}

In the X-script, these methods can be called, for example:

<elem value="required tab('table','column', getText()) onFalse taberr(123);" />

b) External methods with an array of parameters. These methods have a single parameter with an array of
items of the type "org.xdef.XDValue[]". The number of items (i.e. number of actual parameters) in the
array depends on the specific method call in the X-script. Note: this type of method is selected by the
compiler of X-definition when the method with the corresponding list of parameters is not found. An
example of an external Java method declaration:

public static boolean MyMethod(XDValue [] params) {
 int numParams = params.length;
 for (int i = 0; i < params.length; i++) {
 ...
 }
...
}

c) The external methods with the first parameter of the type XXNode, XXElement, or XXData. These
methods allow you to use the methods implemented on the value of this parameter. Since the parameter
is the control object of the X-definition engine connected with the processed XML data you can access
this way to the internal values of the X-definition process. In the X-script, you do not need to specify this
parameter. The compiler substitutes it automatically. Example:

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 65 / 104

public static XDParseResult MyDataType(XDData data) {
 String s = data.getText();
 XDParseResult result = XDFactory.createParseResult (s);
 If (error detected in s) {
 result.error ("Error message ...");
 }
 return result;
}

In the X-script, this method is called without the first parameter, which is set automatically: x = "required
MyDataType()"

External methods must be declared in xd:declaration with the command "external method", followed by a
definition of the external method, which consists of the following parts:

- The result value type is a Java name of the result - e.g. "String", "long", "XDService" etc.

- The qualified name of the method, e.g. "com.myproject.MyClass.myMethod".

- In parenthesis, the list of parameter types is separated by commas, e.g.

 "(cz.syntea.xd.proc.XXElement, java.lang.String, java.lang.long)". The list may be empty. Note the
names of some packages such as “java.lang", and "org.xdef” is default and can be omitted. So, you can
write: "(XXElement, String, long)".

- maybe followed by an optional key name "as" followed by the alias name of the method (though this
name of the method will be accessed in the X-script). If the alias name is not specified, then just the
name of a method is used in the X-script, as declared in the Java class (not the qualified name). So, to
declare different external methods from different classes but with the same names and parameters,
you MUST use the alias name.

- the description is terminated by a semicolon.

Example:

<xd:declaration>
 external method void com.project.MyClass.myMethod (XDValue[]);
 external method XDParseResult cz.project.classes.MyType(XDData);
 ...
</xd:declaration>

If there are more methods, you can write them in the description of the block {between the curly brackets}:

<xd:declaration>
 external method {
 void com.project.MyClass.myMethod (XDValue[]);
 XDParseResult cz.project.classes.MyType(XDData);
 ...
 }
</xd:declaration>

4.1.22 Options

The part of the X-script in which are written options is optional. If it is omitted, the default values are used or the
values of options that are defined in the X-definition that was used at the start of processing (the root element. If
it is written within the model of an element, attribute, or text node, it sets the appropriate values according to
this specification.

The specification of options is introduced with the keyword "options" which is followed by a list of names of
options, separated by a comma. The names of the options are in the following table:

Table 46 - Options

Option name Description

acceptEmptyAttributes the empty attributes are copied from the input (regardless of their declared type).

preserveAttrWhiteSpaces superfluous spaces in attributes are left. The default value.

preserveComments comments are copied into the resulting document (in the validation mode). This
option is only allowed in the header X-definition.

preserveEmptyAttributes the empty attributes are left (only if the attribute is not declared as optional).

X-definition 4.2 Language Description

66 / 104 Version: 4.2.2.26, Date: 2024-03-31

clearReports the temporary reports are cleared before the execution of a section code. This
option is allowed only in the X-script of a model of Element.

preserveReports the temporary reports are not cleared before the execution of a section code. This
option is allowed only in the X-script of a model of Element.

preserveTextWhiteSpaces superfluous spaces in text nodes are left.

ignoreAttrWhiteSpaces not significant extra spaces in attributes are removed before further processing.

ignoreComments the comments are ignored. This option is only allowed in the header of the
X-definition. This is the default value.

ignoreEmptyAttributes the empty attributes (where the length of the value is zero) are ignored (before the
operations are made to remove the white spaces). This is the default value.

ignoreEntities the unresolved external entities in DOCTYPE in parsed XML data are ignored. This
option is possible to declare only in the X-script of the X-definition header.

ignoreTextWhiteSpaces superfluous spaces in text nodes are removed before further processing.

preserveAttrCase the low/capital letters in the attribute remain unchanged. This is the default value.

preserveTextCase the low/capital letters in the text node value remain unchanged. This is the default
value.

setAttrLowerCase letters in attributes are set to lowercase before further processing.

setAttrUpperCase letters in attributes are set to uppercase before further processing.

setTextLowerCase letters of the value of a text node before further processing are set to lowercase.

setTextUpperCase letters of the value of a text node before further processing are set to uppercase.

trimAttr whitespaces at the beginning and end of the attribute value are removed before
further processing. This is the default value.

noTrimAttr whitespaces at the beginning and end of the attribute value are left.

trimText whitespaces at the beginning and end of the text node values are removed before
further processing. This is the default value.

noTrimText whitespaces at the beginning and end of the text node value are left.

moreAttributes in the element are allowed even undeclared attributes. These attributes are copied
without change to the current element.

moreElements even undeclared elements are allowed in the element. These elements are copied
without change to the current element.

moreText even undeclared text nodes are allowed in the element. These nodes are copied
without change to the current element.

clearAdoptedForgets if this option is specified in the X-script of an element, all actions "forget" are
ignored for all nested elements and their descendants.

ignoreEntities the option can be declared only in the X-script of the X-definition header and it
causes files with external entities (in the DTD specification) to be ignored. This
option is taken from the X-definition which was used for processing the root
element.

resolveEntities the option can be declared only in the X-script of the X-definition header and it
causes files with external entities (in the DTD specification) to be processed. This
option is taken from the X-definition which was used for processing the root
element. This is the default value.

resolveIncludes the option can be declared only in the X-script of the X-definition header and it
causes links to external data with the elements (http://www.w3.org/2001/XInclude)
to be processed. This is the default value.

ignoreIncludes the option can be declared only in the X-script of the X-definition header and it
causes links to external data with the elements (http://www.w3.org/2001/XInclude)
to be ignored.

acceptQualifiedAttr the attributes that are declared without the namespace URI are also accepted with
the namespace (and with the prefix) of the parent element. This is the default value.

notAcceptQualifiedAttr the qualified attribute is not allowed

nillable the element can be empty if it has a qualified attribute "nill " specified with the
value "true". The namespace of the attribute must be:

 "http://www.w3.org/2001/XMLSchema-instance". This option allows compatibility
with the "nillable" property in the XML schema.

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 67 / 104

noNillable element is not "nillable". This is the default value.

acceptOther when validating, XML instances of undeclared objects in the model of an element
are inserted into the result. By default, this option is not set.

ignoreOther when validating, XML instances of undeclared objects in the model of an element
are ignored. By default, this option is not set.

cdata this option causes a text node to be generated as a CDATA section. This option is
only permitted in the X-script of text nodes. By default, this option is not set.

Example:

xd:script = "options ignoreAttrWhiteSpaces, ignoreTextWhiteSpaces, preserveEmptyAttributes"

Note: Option "noTrimText" should be used carefully. For example. for the following X-definition:

<xd:def xmlns:xd="http://org.xdef/xdef/4.2" xd:name="a" xd:root="E">
 <E xd:script="options noTrimText">
 <O xd:script="*" />
 optional string();
 </E>
</xd:def>

The following input data will be validated incorrectly:

<E>
 <O>
</E>

The reason for this is the fact that after the initial element <E> is an empty line (before the process of validation
the empty lines are not removed due to the option "noTrimText"). The empty line, therefore, is seen as a value of
a text node and the engine of X-definition expects the model of a text node that does not exist and therefore
reports an error. X-definition, therefore, understands the above input data if you select the "noTrimText" option
as follows:

<E>
 optional text
 <O>
 optional text
</E>

4.1.23 The references to the object of X-definitions

 In the X-script of a model, it is possible to insert a link to other models, groups, etc. Links make the source code
of the X-definition clearer and easier to maintain in large projects.

4.1.23.1 Reference to a model of an element

If we describe a reference to a model of an element, we can write it in the X-script sections. We can also add the
specification of attributes that differ from the model. The unspecified attributes and sections of the X-script are
taken from the referenced model. The reference starts with the keyword “ref" and follows the specification of the
location of the target. Note that if the target is in the same X-definition as the reference itself, you can omit the
name of the X-definition in the specification of the target location.

"ref" X-definition name “#" model name

If the inner elements or text values in the following example are declared in an element with a link, the
referenced models are :

<xd:def xmlns:xd = "http:/org.xdef/xdef/4.2" xd:name = "Subject" xd:root = "Company | Address ">

 <Company xd:script="ref Address ">
 <Name>required string (1.30)</Name>
 <Address xd:script = "ref Address" />
 </Company>

 <Address Street = "required string(1,30)"
 Number = "optional int ()"
 City = "required string (1.30)"
 ZIP = "optional num (5)" />
</xd:def>

Note that the element Address> is added to the element <Company>, and the list of attributes and child nodes is
taken from the element <Address>.

X-definition 4.2 Language Description

68 / 104 Version: 4.2.2.26, Date: 2024-03-31

The model of the element “Company” will be:

 <Company xd:script="ref Address ">
 <Name>required string (1.30)</Name>
 <Address Street = "required string(1,30)"
 Number = "optional int ()"
 City = "required string (1.30)"
 ZIP = "optional num (5)" />
 </Company>

Note the name of the element may be different from the model from the reference (see Chapter 4.1.23.3
Reference to a sequence of descendants of the model of an element).

4.1.23.2 Reference to a model of an element with a different namespace

If the namespace in a model of element differs from the namespace of all child nodes and attributes with the
original namespace is changed to the new namespace. However, if the namespace of the model with an empty
namespace and if it refers to a model with a non-empty namespace, then the namespace of all attributes and
child nodes with the namespace in the referenced model is not changed.

Example if the namespaces of models are different and not empty:

<xd:def xmlns:xd = "http:/org.xdef/xdef/4.2" xmlns:a = "one" xmlns:b = "two"
 xd:root = "a:Person | b:Address ">
 <a:Person FirstName = "string (1.30)" LastName = "string (1.30)" >
 <a:Address xd:script = "ref b:Address" />
 </a:Person>
 <b:Address Street = "required string(1,30)"
 Number = "optional int ()"
 City = "required string (1.30)"
 b:ZIP = "optional num (5)" />
</xd:def>

In the result of the element Person will be all occurrences of the namespace “b” changed to “a”:

 <a:Person xmlns:a = "one" FirstName = "string (1.30)" LastName = "string (1.30)" >
 <a:Address Street = "required string(1,30)"
 Number = "optional int ()"
 City = "required string (1.30)"
 a:ZIP = "optional num (5)" />
 </a:Person>

However, if the element “Person” has an empty namespace:

<xd:def xmlns:xd = "http:/org.xdef/xdef/4.2" xmlns:b = "two" xd:root = "Person | b:Address ">
 <Person FirstName = "string (1.30)" LastName = "string (1.30)" >
 <Address xd:script = "ref b:Address" />
 </Person>
 <b:Address Street = "required string(1,30)"
 Number = "optional int ()"
 City = "required string (1.30)"
 b:ZIP = "optional num (5)" />
</xd:def>

Note that the attribute ”ZIP” has still the namespace “b”:

 <Person FirstName = "string (1.30)" LastName = "string (1.30)" >
 <Address xmlns:b = "two"
 Street = "required string(1,30)"
 Number = "optional int ()"
 City = "required string (1.30)"
 b:ZIP = "optional num (5)" />
 </Person>

4.1.23.3 Reference to a sequence of descendants of the model of an element

 In addition to links to the models of the elements, it is possible to refer to a sequence consisting of the
descendants of an element. Take, for example:

<Marriage date="required date">
 <xd:includeChildNodes ref="Couple"></xd:includeChildNodes>
</Marriage>

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 69 / 104

<Couple>
 <xd:mixed>
 <Husband xd:script="ref Person" />
 <Wife xd:script="ref Person" />
 </xd:mixed>
</Couple>

A description of the child element <Marriage> is taken from the model element <Couple>.

4.1.24 Comparison of the structure of models

If you want to compare the structure of a model with another model, you write the keyword "implements" or
"uses" in the X-script of the model and add a reference to the model, with which it should be compared. It only
compares quantifiers and data types of the model in the link, the other sections are ignored.

 In the case of "implements", the name of the compared model must match:

<xd:def xd:name="A" ...>
 <Company xd:script = "implements B#Company"
 ... attributes >
 <Child nodes ...
 </Company>
</xd:def>

<xd:def xd:name="B" ...>
 <Company xd:script="ref Address">
 <Child nodes ...
 </Company>

</xd:def>

In the case of "uses", the name of the model and the compared model can be different. However, the structure
must be the same. In addition, if "uses" is specified in the model, then if a validation method is not declared for a
value then this method copies from the referenced model.

<xd:def xd:name="A" ...>
 <Company xd:script = "uses B#Object"
 Street = "required"
 Number = "optional"
 Town = "required"
 ZIP = "optional" >

 <Name>required</Name>
 </Company>
</xd:def>

<xd:def xd:name="B" ...>
 <Object Street = "required string(1,30)"
 Number = "optional int()"
 Town = "required string(1,30)"
 ZIP = "optional num(5)" >
 <Name> required string(1,30) </Name>
 </Object>
</xd:def>

If the validation section in the X-script of an attribute or a text node is missing, it is taken from the referenced
model. Example:
<A xd:script= "uses B"
 Attr1 = ""
 Attr2 = "string(10,20)"/>

<B Attr1 = "optional int(1,2)"
 Attr2 = "string(10,20)"/>

The validation section of the attribute Attr1 from model B is copied into model A. Therefore, it will be “optional
int(1,2)”.

X-definition 4.2 Language Description

70 / 104 Version: 4.2.2.26, Date: 2024-03-31

5 X-definition processing modes
 There are two different modes of functionality for the X-definition process. The first mode is called "validation
mode". This mode parses the input data checks occurrences of objects according to the selected X-definition and
parses string data with the validation methods. In this mode, the processor is controlled by the input data and it
finds appropriate parts of models in the pool of X-definition.

The second mode is called "construction mode". This is not controlled by the input data but by the X-definition
itself. The processor in this case processes the X-definition, which acts as the "cookbook" according to which the
resulting object is constructed.

 The validation mode is useful for the validation and processing of input data. The construction mode serves for
the construction of resulting data or the transformation of some input data.

5.1 Validation mode

In this mode, the process is controlled by the input data. If the input data are well-formed XML documents, the
process sequentially parses the input data and invokes actions in different events or stages of processing. The
input data may also be passed to the processor in the form of org.w3c.dom.Element or org.w3c.dom.Document.
In this case, the actions are invoked in the sequence given by recursive processing of the document or element
tree. The algorithm of processing is as follows:

1) Starting the processing of the Root Element. At the beginning of processing, the processor only knows the
name of the root element of the XML document and its attributes. The X-definition processor looks for the
model element for the root element. Events that may occur are: “init“ (the action is invoked before the
following processing) and “onIllegalRoot“ (if the element model is not found in the xd:root list). You can
describe these actions in the header of the X-definition in the attribute xd:script. According to the model
element, the next process is continued.

2) Processing of Elements. At the moment an element is recognized, a new element is created with the
specified name, and then the element is searched for within the X-definition. When the description is found,
the processor checks if the occurrence of the element exceeds the limit of the occurrence. If yes, the event
“onExcess“ is activated. If a description of the element is not found, or if the element is described as illegal,
the event “onIllegalElement” occurs.

3) Processing of the list of attributes. In this step, the list of attributes in the element is compared to the list of
attributes in X-definition. Among the events that may result is "onIllegalAttr" (if the attribute is not described
in X-definition or if it is described as “illegal“.) If a description of the attribute is found, then the validation
code is invoked to check the content of the attribute value. If the result of validation is "true" the event
"onTrue" occurs and the resulting attribute value is written to the resulting element. If the validation result is
"false" then the event "onFalse" occurs. If an attribute is described in X-definition but is missing in the data,
the event “onAbsence” occurs.

4) Processing of the element contents (child nodes). After the attribute list is processed, the event
“onStartElement“ occurs. In this event, the name of the element and all attributes are processed. After the
event “onStartElement“ is complete, the processor continues to step 5 or step 6.

5) Processing of child elements. When an element of the data contains child elements, the process continues
to step 2.

6) Occurrence of text in a child node. If a text child node occurs, the processor continues to proceed in the
manner of attributes. If the text node is described as illegal, the event “onIllegalText“ occurs (instead of
“onIllegalAttr“). Other events are the same. Note that text node values are available after all entity
references are resolved and after all the adjacent text values and CDATA sections are connected to one text
value.

7) End of processing of an Element. After all child nodes of the element are processed, the processor checks the
minimum occurrence limit specified by X-definition. If the minimum limit for an element is not reached, the
event “onAbsense“ occurs. After the minimum limits are checked, the event "finally" occurs. After the event
“finally“, if described, the method “forget“ is invoked, which removes the contents of the processed element

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 71 / 104

from the XML tree. (The counter of the number of occurrences of nodes remains unchanged, even if it is
“forgotten“).

Note: If the XML data are processed in the source format, the event “onXMLError“ may occur if the processor finds
that the input XML data are not well-formed. In X-definition is possible to invoke the action associated with this
event and the user can decide whether the processing will continue or terminate. If no XML error action is
described, then the processor continues when the parser finds light errors (as described in the XML specification).

You can try validation mode on the web at: https://xdef.syntea.cz/tutorial/examples/validate.html.

5.2 Construction mode

In the construction mode, the process is controlled by X-definition (not by the input data as the validation mode).
In the beginning, a model according to which the construction will start must be specified. The child models are
processed recursively. For each object described in the model, the construction is provided according to the
internal value we call "context". This happens as the event "create". The value of the context may be set by the
action of the event "create" (however, if the specification of the action is missing, a default value may be used). In
the "create" action it is possible to set data for the creation of each object from the model. Introduction to how to
use the construction mode of the X-definition is available on:

https://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.2_construction_mode.pdf.

The construction mode can be used e.g. for the transformation of input data to another structure. In the
construction mode, the events “onAbsence“, “onExcess“, “onIllegalElement“ “onIllegalAttr“, or “onIllegalText“
etc. should not happen (if yes, then it is an error of the program). The processor proceeds by the following steps:

1) Selection of the root element model. The model for the construction of the root element is specified
in the method "xcreate" which starts the process of construction. If the model is not found then the event
“onIllegalRoot“ occurs. Otherwise, the processor continues to step 2.

2) For all objects specified within X-definition, the action “create” is performed at the moment the
processor in its recursive processing encounters a new object. The action "create" returns a value of the
context used for the construction of the object. If no action "create" is specified the default value of the
context is used. After the object is constructed, all the events as described in the validation mode may occur.
The sequence of actions is given by the processing of the tree described in the model, starting with the root
element model.

In walking in the tree of the model, the element with attributes will first be constructed and then the child nodes
will be constructed.

The construction of the objects described in the model depends on the context.

The context may be different types of values:

1. null

2. boolean

3. int

4. String

5. Element

6. Container

7. ResultSet

8. any other value will be converted to a string (or null value if it is null)

From the value types "Container" and "ResultSet" an iterator is internally created, which automatically returns the
entries from the value. Note that if the result of XPath is a NodeList, it is converted to the Container. In the same
way, the sequence result of XQuery is converted to the Container object. The ResultSet returns rows from a table.

You can try construction mode on the web at: https://xdef.syntea.cz/tutorial/examples/compose.html.

5.2.1 Construction of element

The constructed element is given its name according to the name of the model. So, the only thing necessary to
know is whether to construct it or not. If yes, then an empty element with the given name and namespace is

https://xdef.syntea.cz/tutorial/examples/BNF.html
https://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.2_construction_mode.pdf
https://xdef.syntea.cz/tutorial/examples/compose.html

X-definition 4.2 Language Description

72 / 104 Version: 4.2.2.26, Date: 2024-03-31

constructed. The element is constructed if, and only if, the maximum of the quantifier has not been reached and
the value of the context type is:

1. boolean and it is not false

2. integer and the maximum number of instances of this element has not yet been created (if 0 => do not
create)

3. the iterator created above the sequential part of the Container has another next item

4. the Resultset has another next-row

5. any other value is not null

After the element has been constructed, the context remains available for the construction of child objects.

5.2.2 Construction of attributes

Attributes are created from models of attributes of the model of the element. The name and namespace of an
attribute are created according to the model. The value is created from the string created from the value from the
context. An attribute is created if the context is not null and If the context is

1. boolean and it is not false, then it is created only if a default value is specified in the X-script

2. String, the value is set to the attribute

3. Element, which has an attribute with the same name and namespace

4. Container, whose named value is the same as the name of the attribute model (the value is converted to
String)

5. ResultSet, the actual row has an entry where the column name is equal to the name of the attribute (case
insensitive)

6. any other value is converted to the String

5.2.3 Construction of text nodes

The text node is created if the context is not null and If the context is

1. boolean and it is not false, then it is created only if a default value is specified in the X-script

2. String, the value is set as the value of the text node (only if the string is not empty)

3. Element, which has a text node (the value of the text is used)

4. Container, if a string value exists in the sequential part (the first occurrence is used)

5. ResultSet, the concatenated value of entries is taken from the actual row

6. any other value is converted to the String and then used for the construction of the text node

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 73 / 104

6 JSON/XON, YAML, Properties/Windows INI

6.1 Models of JSON

In version 4.2 it is possible to describe and process JSON (and XON) data. A document is described in the text
content of the element “xd:json” which is specified as a child member of X-definition. Each JSON model must have
a unique name which is specified in the attribute ”xd:name”. The properties of values of a JSON document are
described similar way as in models of XML elements. The result of a JSON model is the XON object.

6.2 JSON simple values

JSON Simple values are strings, numbers, booleans, or nulls. The simple values parsers are

- jstring name of the parser of JSON string values
- jnumber name of the parser of JSON number values
- jboolean name of the parser of JSON Boolean values
- jnull name of the parser of JSON null values

Except for the parsers above you can use any of the XML value parsers, such as date, dateTime, base64Binary,
hex64Binary, duration, long, decimal, etc. The result is an XON object (it can be converted to JSON and those
parsed values are then converted to strings). The result of the null value is XON null. The results of XML numeric
types (integer, float, decimal, etc.) are JSON numbers.

6.3 What is XON?

XON is an extension of JSON format so that it supports all data types described in X-definitions. The JSON format is
fully supported also in XON. Moreover, in addition to JSON, it enables the description in detail of the JSON type
Number as types in X-definitions. So as JSON, the XON format describes arrays and maps (called in JSON
“objects”). Java types created from parsed JSON source data are:

- java.util.Map<java.lang.String, java.lang.Object> named pairs of the JSON objects (maps).
- java.util.List<java.lang.Object> items of the JSON arrays.
- java.lang.String JSON string items
- java.lang.Boolean JSON Boolean items
- java.lang.Number JSON numeric items

XON extends JSON data types. It allows the following types which are converted to the following Java objects:

 Java type Format Examples

- org.xdef.sys.SDatetime d ISO datetime d2021-03-10T23:55Z, D13:55+02:00, d—05
- org.xdef.sys.SDuration ISO duration P1Y1M1DT1H1M1.12S, -P2Y
- org.xdef.sys.EmailAddr e"email address" e"John Brown <john@brown.com>"
- org.xdef.sys.GPSPosition g(GPS notation) g(51.52, -0.09, 0, London)
- java.util.Currency C(code) c(USD)
- org.xdef.sys.Price p(price) p(12.50 CZK)
- java.lang.byte[] b(base64) b(HbRBHbRBHQw=)
- java.lang.Character c"character notation" c"x", c"\n", c"\u0007"
- java.lang.URI u"uri" u"https://org.xdef/ver1"
- java.net.InetAddress /inetAddr /129.144.52.38, /1080:0:0:0:8:800:200C:417A

Note that GPS position must contain latitude and longitude and there may be an optional item altitude and a
name of the place. If the name contains other characters it must be recorded between quotation characters.

The Number value distinguishes more types and it can be written in the following way:

- java.lang.Byte number "b" 123b
- java.lang.Short number "s" 123s
- java.lang.Integer number "i" 123i

https://org.xdef/ver1

X-definition 4.2 Language Description

74 / 104 Version: 4.2.2.26, Date: 2024-03-31

- java.lang.Long number 123 (Long.MIVALUE .. Long.MAXVALUE)
- java.lang.Float number "f" 3.14f, 123f
- java.lang.Float Not a Number NaNf
- java.lang.Float positive infinity INFf
- java.lang.Float negative infinity -INFf
- java.lang.Double number "d" (any number and "d")
- java.lang.Double Not a Number NaN
- java.lang.Double positive infinity INF
- java.lang.Double negative infinity -INF
- java.math.BigInteger number "N" 123N, -1N
- java.math.BigDecimal number "D" 0D, 123D. -0.00314D, -3.14e-3D

If there is no letter after an integer number and if it does not exceed the range of the Java Long type, then the
type is "Long", otherwise it is "BigInteger". If there is no letter after a float point number, then the type is
"Double. If the value name in the map is an XML NCName (see Namespaces in XML 1.1 (Second Edition) (w3.org)),
then it is possible to include this name (unlike JSON) without quotes. In XON may be written also comments as a
text between "/*" and "*/" or after the "#" character up to the end of the line.

The first line of XON data may be a directive that starts with the "%" character and the specification of the
encoding of data (default value is UTF-8).

The complete syntax of XON data is in Appendix B: XON syntax

Example of XON data:

%encoding="windows-1250" # The character set specification of this XON data must be the first line of data
[#### example of XON ####
 {
 a : "\u0007", b : c"\n", c : c"\"", d : c"\\", e: c"x", # Characters
 " name (with space)" : "xy" # The name must be quoted, it is not an XML name (it contains spaces).
 Towns : [# array with GPS locations of towns
 g(50.08, 14.42, 399, "Prague Old town") # The position name contains a space, so it must be quoted
 g(48.2, 16.37, 151, Wien),
]
 },
 0, /* Long */
 1i, /* Integer */
 11s, /* Short */
 -2b, /* Byte */
 0.0, /* Double */
 1d, /* Double */
 INF, /* Double (Positive Infinity) */
 NaN, /* Double (Not a Number) */
 -3.14e-3f, /* Float */
 -INFf, /* Float (Negative Infinity) */
 -3.25D, /* BigDecimal */
 2N, /* BigInteger */
 C(USD), /* Currency */
 p(12 USD), /* Price */
 b(HbRBHbRBHQw=), /* byte array (base64) */
 P1Y1M1DT1H1M1.12S, # Duration
 d2021-01-11, /* date */
 d--11, /* month */
 d2000Z, /* year with zone */
 d2021-01-12T01:10:11.54012-00:01, /* date and time (nanoseconds, zone) */
 999999999999999999999999999999999, /* BigInteger (the number is bigger than MAXINT) */
 /129.144.52.38, /* inetAddr (IPv4) */
 /1080:0:0:0:8:800:200C:417A, /* inetAddr (IPv6) */ "
] # End of XON example

6.4 Models of XON/JSON objects

Models of XON objects are described directly as JSON objects (because XON is an extension of JSON and because
in JSON models all values are strings. The values of members (name-value pairs) are described in a similar way to
the values of XML attributes or XML text nodes. Models are valid for data in both formats: JSON or XON.

Example1:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" xd:root = "Person">
 <xd:json name = "Person" >
 { Person : {

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 75 / 104

 ID : "optional jnumber()",
 Name : "jstring()",
 Address : {
 Town: "jstring()",
 Street: "jstring()",
 Number: "jnumber()"
 }
 }
 }
 </xd:json>
</xd:def>

Note that since the model notation can be in either JSON or XON form, the item names ("Person", "ID", etc.) do
not need to be enclosed in apostrophes if they conform to NCName syntax – see Namespaces in XML 1.1 (Second
Edition) (w3.org).

Example of JSON data described by the X-definition above:

{ "Person": {
 "Name" : "Boris Jonson",
 "Address": {
 "Town": "London",
 "Street": "Downing street",
 "Number": 10
 }
 }
}

Note the member “ID” is missing since it is described as optional.

Note that the result of the validation process of JSON models is always an XON object. However, you can always
convert it to JSON by the method “org.xdef.xon.XonUtils. xonToJson(Object x)”. All XON types, which are not
supported by JSON (i.e. date, time, duration, email address, IP address, GPS, price, currency, byte[], char, or URI)
are converted to the JSON string value.

The following example describes the network description. Data is a JSON array containing items (map of named
values). After the items are processed the external Java method “processItem” is invoked and then the memory
with the parsed data is released.

Example2:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" xd:name = "Network" xd:root = "GWArray">

 <xd:declaration>
 /* GW_ID is the string with 36 characters. */
 type GW_ID string(%length=36, %pattern='[0-9a-f-]+');

 /*** Declaration of external Java method. ***/
 external method void gwartass.GwMethods.processItem(XXNode xnode); /*Finally process parsed item*/
 </xd:declaration>

 /**
 * Model of item 'network' of data item (one line with JSON map) *
 **/
 <xd:json name='GWArray'>
 [
 { %script = "occurs 0..*;
 finally processItem();/* Call this method at the end of processing of item */;
 forget /* release the memory after the item was parsed */",

 "container": "required; boolean();",
 "res-id": "required; GW_ID;", /* see X-definition Common */
 "dev-sys-name": "optional; string();",
 "roles": ["occurs 0..3; enum('OLT', 'MXU', 'OTHER');"], /* array of values */
 "communication-state": "required; enum('0', '1');",
 "remark": "required; string();",
 "is-gateway": "required; eq('-1');",
 "mac": "optional; string(%pattern='[0-9a-f]{2}(-[0-9a-f]{2}){5}')", /*MAC*/
 "manufacturer": "required; string();",
 "ip-address": "optional; ipAddr();",
 "software-version": "required; string();",
 "patch-version": "required; string();",
 "admin-status": "required; enum('active', 'inactive');",
 "ref-parent-subnet": "required; GW_ID;",
 "name": "required; string()",

X-definition 4.2 Language Description

76 / 104 Version: 4.2.2.26, Date: 2024-03-31

 "detail-dev-type-name": "required; string();",
 "alias": "required; string();",
 "location": "required; string();",
 "physical-id": "required; eq('1')", /* always is '1'*/
 "product-name": "required; string();",
 "sn": "optional; string();",
 }
]
 </xd:json>

</xd:def>

6.5 Directives

It is possible to add directives in XON models in X-definitions. A directive starts with a "%" followed by the
directive name. The following directives can be used to describe an XON model:

%script - adding an X-script to the model description

%oneOf - specification of model element variants

%anyName - the name of the named item in the map can be any

%anyObj - the element can be any JSON object.

6.6 Specification of properties with %script directive

The properties of objects you can describe in the item designated by the directive “%script” followed by the “=”
and a string value with the X-script. This item must be the first one before the description of other items. The
syntax of value is the same as in xd:script in XML element models. In the following example the object containing
the item “ID” is described as an optional one:

<xd:json name = "Contract" >
 { Contract = {
 {%script = "optional; finally outln('ID=' + getValue());)",
 ID : "int()"
 },
 { Name : "string()", PersonalId : "int()" }
 }
</xd:json>

Note that after the item “ID” is processed, the value of this item will be printed to the standard output.

6.7 JSON/XON arrays

You can specify the occurrence of values of JSON array items similar way as in the value description of XML
models. The occurrence of items is specified in the value description. The following example of a JSON model of
an array is the first item string followed by a minimum of 2 and a maximum of 3 integers. After the first string
follows any number of objects with coordinates of points.

<xd:json name = "array">
 ["jstring()",
 "occurs 2..3 jnumber();",
 {%script = "occurs *", X: "jnumber", Y: "jnumber"}
]
</xd:json>

The example of parsed data with the model above:

["Shape",
 123, 456, 789,
 {"X": 5, "Y": 6},
 {"X": -15.5, "Y": 6e2}
]

6.8 Specification of properties of arrays with %script directive

Similarly, as in objects, the properties of arrays can be described using the “%script” directive. The following
example describes the model of matrix 3 x 3 of floating-point numbers:

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 77 / 104

<xd:json name = "matrix">
 [
 [%script = "occurs 3", "occurs 3 float()"]
]
</xd:json>

Note that the %script directive describes the occurrence of an array and the occurrence of the value describes the
number of values.

The example of parsed data with the model above:

[
 [123.4, -456, 789.01],
 [1.4, 4.56, 7.8901],
 [1E2, -6e-2, 0]
]

6.9 %oneOf directive

If the case an item has more variants you specify them as an array where the first item is %oneOf directive. Then
the model chooses an item from the items following the first one. Example:

<xd:json name = "genre">
 { "Genre":
 [%oneOf,
 "jstring()",
 ["occurs 2..* jstring()"]
]
 }
</xd:json>

The data of “Genre” can be either:

{ "Genre": "classic" }

Or:

{ "Genre": ["jazz", "pop"] }

6.10 %anyName directive of named items in the map

If the name of an item in a JSON/XON map is not known you can use the directive %anyName. Example:

<xd:json name='Cities'>
{ "cities": [
 { %script = "occurs 1..*; ", /* specification of number of map items */
 %anyName: [%script = "occurs 1..*;", /* specification of number of named items in map */
 { %script = "occurs 1..*;",
 "to": "jstring();",
 "distance": "int();"
 }
]
 }
]
}
</xd:json>

Valid data of “Cities” can be:
{ "cities": [

 { "Brussels": [
 {"to": "London", "distance": 322}, {"to": "Paris", "distance": 265}
]
 },
 { "London": [
 {"to": "Brussels", "distance": 322}, {"to": "Paris", "distance": 344}
]
 }
]
}

6.11 %anyObj directive

If there is a %anyObj directive at a location in the model, any object can be at that location. For example:

X-definition 4.2 Language Description

78 / 104 Version: 4.2.2.26, Date: 2024-03-31

<xd:JSon name = "avyarray">
 [%anyObj]
</xd:JSon>

The entry describes an array whose items can be any XON/JSON objects.

6.12 Reference to the JSON model

From a JSON model it is possible to refer to other JSON models similar way as in XML models from the X-script:

<xd:json name = "genres">
 [{%script = "occurs 1..*; ref genre"}]
</xd:json>

<xd:json name = "genre">
 { "Genre":
 [%oneOf,
 "jstring()",
 ["occurs 2..* jstring()"]
]
 }
</xd:json>

6.13 YAML

YAML format is used often in configuration files. YAML objects are possible to convert to JSON. Therefore, the
description of YAML objects is possible to write as a JSON model. So, with the JSON model in X-definition, you can
process input data in the YAML format and you can convert it to JSON/XON or YAML. Note that processing of
YAML data requires adding the package “org.yaml.snakeyaml” to the classpath.

Let’s have the YAML data:

Cities:
- from:
 - Brussels
 - {to: London, distance: 322}
 - {to: Paris, distance: 265}
- from:
 - London
 - {to: Brussels, distance: 322}
 - {to: Paris, distance: 344}

However, the model describing this data in X-definition is specified as JSON:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2" name="yamlExample" root="distances">
 <xd:json xd:name="distances">
 { Cities: [
 { %script = "occurs +",
 from: [
 "string()",
 { %script = "occurs +", to: "jstring()",distance: "int(0, 9999)" }
]
 }
]
 }
 </xd:json>
</xd:def>

6.14 Properties and Windows INI

In X-definition, you can describe models of data in the Properties and the Windows INI format. The Properties
format is the sequence of named values and the Windows INI format starts with properties and follows named
sections of properties (the named section starts with “[” name “]”). The value of a named item is a string and in
the model, the value is described by X-script.

Example of INI data:

TRSUserName = John Smith
[User]
Home = D:/TRS_Client/usr/Smith
Authority=CLIENT

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 79 / 104

ItemSize=4000000
[Server]
RemoteServerURL=http://localhost:8080/TRS/TRSServer
SeverIP = 123.45.67.8
Signature = 12afe0c1d246895a990ab2dd13ce684f012b339c

X-definition of the Windows INI data:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2" name="iniExample" root="TRSconfig">
 <xd:ini xd:name="TRSconfig">
 TRSUserName = string()
 [User]
 Home = file()
 Authority = enum("SECURITY", "SOFTWARE", "CLIENT", "UNREGISTERED")
 ItemSize = int(10000, 15000000)
 [Server]
 RemoteServerURL = url()
 SeverIP = ipAddr()
 Signature = SHA1()
 </xd:ini>
</xd:def>

The result of processed data is again in the JSON/XON object which can be converted to the string in Windows INI
format by the method “org.xdef.xon.XonUtils. xonToIni(Object xon)”

X-definition 4.2 Language Description

80 / 104 Version: 4.2.2.26, Date: 2024-03-31

7 X-components
X-component is a source code of Java class generated according to a model of the element (similar way as JAXB).
The description of generation X-components is written in the text of the element "xd:component". In the
X-component the values of attributes, text nodes, and child elements are accessible by getters and setters (the
child elements are also represented by an X-component). User manual for X-components is available on:

https://xdef.syntea.cz/tutorial/en/userdoc/xdef4.2_Xcomponent_eng.pdf.

7.1 Values in X-component of getters in XON objects

 Text values in the X-component are converted according to the data type as described in the table:

Table 47 - Conversion of X definition data types in X-component getters and XON values

Data type in X-definition X-component

anyURI java.net.URI

base64Binary, hexBinary, base64, hex byte[]

boolean java.lang.Boolean

byte, short, int, long, integer java.lang.Byte, java.lang.Short, java.lang.Integer,
java.lang.Long, java.math.BigInteger,

char Java.lang.Character

currency java.util.Currency

datetime, xdatetime, gDate, gTime, gYear, gMoth,
gYearMonth, gMonthDay

org.xdef.sys.SDatetime

(also available as java.util.Calendar,
java.util.Date, java.sql.Timestamp)

decimal, dec java.math.BigDecimal

duration org.xdef.sys.SDuration

enum java.lang.String or user-declared Java enum

float, double java.lang.Float, java.lang.Double

emailAddr org.xdef.XDEmailAddr

gps org.xdef.XDGPSPosition

ipAddr java.net.InetAddress

price org.xdef.XDPrice

telephone org.xdef.XDTelephone

other data types java.lang.String

The values of child elements are represented as X-component objects. If the maximum number of the quantifier is
higher than one then it is represented by java.util.List<correspondent X-component>. Also if there occurs more
than one, the text value at one position will be represented as java.util.List<correspondent datatype>.

7.2 Access to values of X-component

The values of attributes, elements, and text values in the X-component, are accessible by the methods getNAME
and setNAME, where "NAME" is the name of the attribute or element in the X-definition. If the element or a value
may have more occurrences, it creates an array of values (implemented using java.util.List), and instead of a
setter, it generates the method addNAME. Because there are more possibilities to work with data types DateTime
getters are generated in more variants: timestampOfNAME, calendarOfNAME, and dateOfNAME.

https://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.2_Xcomponent.pdf

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 81 / 104

7.3 X-component commands

The commands are written as the text of the element "<xd:component>". This element can be specified as the
direct child node of any X-definition, Each command is ended with the semicolon (";").

7.3.1 %class

This command specifies the generation of an X-component according to the model of an element. The "%class"
keyword is followed by a fully qualified class name and by the keyword "%link" which specifies the X-position of a
model in the set of X-definitions, from which the X-component is generated. If the X‑component extends a Java
class or it implements a Java interface then you can specify "extends" SuperClassName and “implements”
InterfaceName after the name of the Java class, where SuperClassName and InterfaceName must be a fully-
qualified name. The syntax is the same as in the declaration of a class in the Java language.

7.3.2 %bind

With the "%bind" command, a new name of an item in an X‑definition (the attribute model, element model, or
text node model and the corresponding names of the getters and setters). The keyword "%bind" must be followed
with the name that will be applied instead of the automatically generated one. After the specification of the
name, the command continues with the keyword "%from" which is followed by the list of X-positions (separated
by a comma) to which the statement relates. The same name can be used in more models. The getters and setters
will automatically be adjusted to match the newly assigned name. If the generated Java class has an ancestor, it
can be used in more models. The getters and setters will automatically be adjusted to match the newly assigned
name. If the generated Java class has an ancestor, you can use the "%bind" command to bind the getter and
setter defined in the ancestor. In this case, a given variable, including getters and setters will not be generated. It
uses the implementation of those methods in the ancestor.

7.3.3 %interface

The command "%interface" is used when the (final) model takes the structure of another (referenced) model and,
where appropriate, it also adds additional attributes, text values, or elements. To make the X‑components
generated from the models behave like the X-component created from the referenced ones, you can create an
interface from the given model. This interface can then be added for the generating of final models. The interface
command starts with the keyword %interface, which is followed by the fully qualified name of the interface and
by the keyword %link followed by the X-position of the model in the project.

7.3.4 %ref

It often happens that the project (XDPool) is generated from more X-definitions. In this case, the X-component is
generated from the given X-definition but XDPool is different (for example, there is an X-definition extra, missing,
etc.) it can be used for the already created X-component. It is necessary to prevent its new generation (for
example, if the X-component is located in another Jar file). Reference to the already generated X-component is
provided by the command %ref with the fully qualified name of the already generated X-component and with the
keyword %link with the X-position of the model in the XDPool.

7.3.5 %enum

If the X-definition is a data type enum is specified, its value in the X-component is represented by default as a
String. However, in case we want to have a choice in the code only from the allowed values, the data value of the
enum is possible to generate as a Java enum type. The data type must be defined in the X-script section
<xd:declaration>. The enum will be generated by using the command %enum followed by the fully qualified name
of the enum Java class and the name of the data type.

X-definition 4.2 Language Description

82 / 104 Version: 4.2.2.26, Date: 2024-03-31

8 Invoking X-definitions from Java
The X-definition processor is implemented in the Java programming language. The executable code is distributed
in the file:

"xdef.jar"

The Java documentation is distributed in the file:

"xdef-javadoc.jar"

First, you must compile the X‑definition sources and create an instance of the class "org.xdef.XDPool" by invoking
the static method "compileXD" of the class "org.xdef.XDFactory". The parameter list of this method allows you to
compile a set of X‑definitions (the project) from the file URLs or input streams. Note that the file names may also
contain the wildcards “*“ and “?“. The created object XDPool contains a set of compiled X-definitions.

You can modify parameters of the compilation of X‑definitions and the processing by setting different properties
to the parameter "props" as in the following example (it is also possible to set it via e.g.
java.lang.System.setProperty() – for values see org.xdef.XDConstants).

Example of creating XDPool:

String[] xdFiles; // the array of file names
Properties props = System.getProperties();
Class[] classes = null;
// create the pool of X-definitions
org.xdef.XDPool xp = org.xdef.XDFactory.compileXD(props, xdFiles);

Before running the validation mode or construction mode, you should also prepare the reporter that provides the
recording of error messages to a log file:

org.xdef.sys.ArrayReporter reporter =
 new org.xdef.sys.ArrayReporter();

However, you must first create the object XDDocument from X-definition where the model of your data is
described:

org.xdef.XDDocument xdoc = xpool.createXDDocument(xdName);

8.1 Execution of Validation Mode

The process of validation is started with the method "xparse" of the XDDocument object. This method requires
you to specify the input XML data in the first parameter. A second parameter is a ReportWriter object, where the
errors detected during the validation process are recorded. If this parameter is set to null, then if an error is
reported the RuntimeException is thrown. Example:

import org.xdef.sys.ArrayReporter;
import org.xdef.XDDocument;
import org.xdef.XDPool;
import org.xdef.XDFactory;
import org.w3c.dom.Element;
...
String xdef1;
File xdef2;
URL xdef3;
InputStream xdef4;

...
XDefPool xpool = compileXD(props, xdef1, xdf2, xdf3, xdef4, ...);
....
// name of the X-definition with root model
String xdName;
// pathname of the XML data to be validated
String sourceFileName;
// reporter where error messages will be written (here to ArrayList in the memory)
ArrayReporter reporter = new ArrayReporter();
...
// prepare XDDocument
XDDocument xdoc = xpool.createXDDocument(xdName);
// validate input data
org.w3c.dom.Element el = xdoc. xparse(sourceFileName, reporter);
// check if the errors were reported

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 83 / 104

if (!reporter.errors()) {
 System.out.println("OK");

} else {
 System.err.println(reporter);
}

Note: You may use the library “org.xdef.sys.*“, which contains a variety of methods for reporters, processing of
reports, etc. A detailed description is available in the programming documentation. See also some useful
programs providing different operations with X-definitions which are available in the library “org.xdef.util.*“.

8.2 Construction Mode

To invoke the construction mode, use the method “xcreate“ of the XDDocument object. The typical usage

requires the input data either in the source XML format or the object “org.w3c.dom.Element”. The name of

the element model according to which the result should be composed, may be passed to the method as a
parameter as a string, or as the QName object. If the name is missing, the name of the root element of the input
data is used. If you need to set the default context you can set it to the XDDocument by the method setXDContext
before starting the process of construction. Example:

import org.xdef.sys.ArrayReporter;
import org.xdef.XDDocument;
import org.xdef.XDPool;
import org.w3c.dom.Element;
...
XDPool xpool ...
String xdName ...
String resultModelName;
String contextData;
...
ArrayReporter reporter = new ArrayReporter();
XDDocument xdoc = xpool.createXDDocument(xdName);
xdoc.setXDContext(contextData);
Element el = xdoc.xcreate(resultModelName, reporter);
if (!reporter.errors()) {
 System.out.println("OK");
} else {
 System.err.println(reporter);
}

To illustrate, here is an example of the X-definition, input data, and the result. X-definition:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2" xd:name="GenContract">
<xd:declaration>
<![CDATA[
 ParseResult pid() {
 String s = getText();
 ParseResult result = new ParseResult(s);
 if (!string(10,11))
 result.error('Incorrect length of PID');
 if (s.substring(6,7) != '/')
 result.error('Missing slash character');
 if (!isNumeric(cut(s,5)))
 result.error('Second part is not numeric');
 if (!isNumeric(s.substring(7)))
 result.error('First part is not numeric');
 return result;
 }
]]>
</xd:declaration>

<Contract cId = "required num(10)" >

 <Owner Title = "required string(1,30); create from('@title')"
 IC = "required num(8); create from('@ic')"
 xd:script = "occurs 1; create from('Client[@role=\'1\']')"/>

 <Holder Name = "required string(1,30); create from('@name')"
 FamilyName = "required string(1,30); create from('@familyname')"
 PersonalId = "required $checkId(); create from('@pid')"
 xd:script = "occurs 1; create from('Client[@role=\'2\']')"/>

 <Policyholder Title = "required string(1,30);

X-definition 4.2 Language Description

84 / 104 Version: 4.2.2.26, Date: 2024-03-31

 create toString(from('@name')) + ' ' + from('@familyname')"
 IC = "required num(8); create from('@ic')"
 xd:script = "occurs 1; create from('Client[@role=\'3\']')"/>

</Contract>

</xd:def>

Input data:

<Contract
 cId = "0123456789">
 <Client role = "1"
 typ = "P"
 title = "Company X Ltd"
 ic = "12345678" />
 <Client role = "2"
 typ = "O"
 typid = "1"
 name = "Frantisek"
 familyname = "Novak"
 pid = "311270/1234" />
 <Client role = "3"
 typ = "O"
 typid = "2"
 name = "Frantisek"
 familyname = "Novak"
 pid = "311270/1234"
 ic = "87654321" />
</Contract>

Result:

<Contract cId = "0123456789">
 <Owner Title = "Company X Ltd"
 IC = "12345678"/>
 <Holder Name = "Frantisek"
 FamilyName = "Novak"
 PersonalId = "311270/1234"/>
 <Policyholder Title = "Frantisek Novak"
 IC = "87654321"/>
</Contract>

8.3 Setting properties

When compiling X-definitions, it is possible to set properties using the first parameter in the
XDFactory.compileXD(props, ...) method. If this parameter is null, or if the property value is not set, the system
will attempt to read the appropriate value from System.properties. Using property values, it is possible to
influence the behavior of X-definition during compilation and process execution. Properties and their values are in
the following table:

Table 48 - Properties

Property name Name in org.xdef.XDConstant Values Explanation Default
value

xdef_debug XDPROPERTY_DEBUG true, false Set the debug mode false

xdef_doctype XDPROPERTY_DOCTYPE true, false XML document accepts
doctype

true

xdef_xinclude XDPROPERTY_XINCLUDE true, false XML include is
permitted

true

xdef_warnings XDPROPERTY_WARNINGS true, false Generate and check or
ignore warning
messages

true

xdef_maxyear XDPROPERTY_MAXYEAR a year or an
empty string

The maximum value of
a year in the processed
date

Not set

xdef_minyear XDPROPERTY_MINYEAR a year or an The minimum value of Not set

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 85 / 104

empty string a year in the processed
date

xdef_specdates XDPROPERTY_SPECDATES list of dates or
an empty string

legal values of dates if
year which is out of
min and max year

Not set

xdef_defaultZone XDPROPERTY_DEFAULTZONE Time zone
name or an
empty string

Set this zone to
processed date/time
values without the
time zone

Not set

xdef_language XDPROPERTY_MSGLANGUAGE 3 characters
language id

Set language of
messages in
X-definition

System
language

xdef_string_codes XDPROPERTY_STRING_CODES list with code
table names or
an empty string

Code table names from
which can be
characters in values of
XML data.

Not set

8.4 Using XQuery

If the classpath does not have an accessible library with an XQuery implementation, the "xquery" method cannot
be used. To use this method, you need to ensure that a library with an XQuery implementation is available in the
classpath. The implementation might not be open source. Therefore, the implementation of XQuery in
X-definition is based on the saxonica library. The free version of the necessary jar file from the saxonica is e.g.:

saxon-he-10.5.jar

and library for the XQuery/XPath3.1 interface:

saxon-xqj-10.5.jar

Both those jar files must be on the classpath!

The result of the "xquery" method is then an object of the "org.xdef.XDContainer" type in the X-definition (which
is internally created from the result of the executed XQuery program, i.e. from
"javax.xml.xquery.XQResultSequence").

Example X-definition:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2" xd:root="a" xd:name="TestXQuery">
 <xd:declaration>
 Container c = xquery("let $b := 'abcd'
 return (0 to string-length($b)) ! (substring($b,1,string-length($b) - .))");
 </xd:declaration>
 <a xd:script = "init {
 for (int i = 0; i LT c.getLength(); i++) {
 outln(c.item(i) + '.');
 };
 }" />
</xd:def>

The printed output from the given XML input data "<a./>“ will be:
abcd.

abc.

ab.

a.

.

8.5 Incremental writing of large XML files

If you need to write a large XML file, you can set the XDXmlWriter in the X-definition to write it. In the element
models, invoke the write data method writeElementStart() from the XDXmlWriter object in the onStartElement
section of the X-script. In the section finally, you finish the element writing by calling the writeElementEnd()
method. The “forget” statement ensures that the processed element is released from memory. If the element has
no internal elements, call the writeElement() method in the ”finally” section.

X-definition 4.2 Language Description

86 / 104 Version: 4.2.2.26, Date: 2024-03-31

Example of X-definition:

<xd:def xmlns:xd='http://www.xdef.org/xdef/4.2' root='a'>
 <xd:declaration>
 external XmlOutStream largeXml;
 </xd:declaration>
 <a x='?' xd:script='onStartElement largeXml.writeElementStart();
 finally { largeXml.writeElementEnd();largeXml.close();}'>
 <b x='' xd:script='*; finally largeXml.writeElement(); forget'>
 <c xd:script='*;'>string();</c>

 <d y='?' xd:script='*; finally largeXml.writeElement(); forget'/>

</xd:def>

The external variable largexml you can set from the Java program:
 OutputStream outStr ... // output stream where to write XML document
 XDPool xpool ...
 XDDocument xdoc = xpool. createXDDocument();
 xd.setVariable("largeXml", XDTools.createXDXmlOutStream(outStr, "UTF-8", true));
...

8.6 JSON data

The processing of JSON data is similar to the processing of XML data. First, it is necessary to compile X-definitions
and to create the XDDocument object. From the XDDocument it is possible in a Java code to invoke the method
“jparse” (similar way as the xparse for XML data). See the example below.

X-definition:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.2" xd:name="jsonTest" xd:root="distances">
 <xd:json xd:name = "distances" >
 { "cities": [
 { :script= "occurs 1..*", /* set occurrence of the item "cities" */
 "from": [
 "string()",
 { :script= "occurs 1..*",
 "to": "jstring()",
 "distance": "int()"
 }
]
 }
]
 }
 </xd:json>
</xd:def>

JSON data:
{ "cities" : [
 { "from": ["Brussels",
 {"to": "Paris", "distance": 265},
 {"to": "Amsterdam", "distance": 173}
]
 },
 { "from": ["London",
 {"to": "Brussels", "distance": 322},
 {"to": "Paris", "distance": 344},
]
 },
 { "from": ["Paris",
 {"to": "Brussels", "distance": 265},
]
 }
]
}

Java program:

import org.xdef.sys.ArrayReporter;
import org.xdef.XDDocument;
import org.xdef.XDPool;
...

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 87 / 104

XDPool xpool ...
File jsonData ...
...
XDDocument xdoc = xpool.createXDDocument("distances");
ArrayReporter reporter = new ArrayReporter();
Object json = xdoc.jparse(jsonData, reporter); // Result is the validated JSON object
if (reporter.errors()) { // reporter contains recognized errors
 System.err.println(reporter); // print errors
} else { // no errors found
 System.out.println("OK");
 ...
}

Note you can try to run JSON data on https://xdef.syntea.cz/tutorial/examples/json.html.

8.7 YAML data

With X-definition it is also possible to work with data in YAML format if you use e.g. the snakeyaml library. With
this library, you can convert the input data to JSON format and convert the output data back to JSON format. In
the following example, we will use the data from the previous paragraph:

YAML data:
Cities:
- from:
 - Brussels
 - {to: Paris, distance: 265}
 - {to: Amsterdam, distance: 173}
- from:
 - London
 - {to: Brussels, distance: 322}
 - {to: Paris, distance: 344}
- from:
 - Paris
 - {to: Brussels, distance: 265}

In the X-definition, the data will be described as JSON, as in the previous paragraph. The result will be in JSON
format and you can convert it back to YAML again using the snakeyaml library. Example of Java code:

import java.io.Reader;
import java.io.StringWriter;
import org.xdef.sys.ArrayReporter;
import org.xdef.XDDocument;
import org.xdef.XDPool;
import org.xdef.json.JsonUtil;
import org.yaml.snakeyaml.Yaml;
...
XDPool xpool ...
Reader jsonData ...
...
XDDocument xdoc = xpool.createXDDocument("distances");
Object o = new Yaml().load(sourceYAML); // parse YAML source to object
String jsonData = JsonUtil.toJsonString(o, true); // convert parsed object to JSON string
ArrayReporter reporter = new ArrayReporter();
Object json = xdoc.jparse(jsonData, reporter); // Result is the validated JSON object
if (reporter.errors()) { // repoter contains recognized errors
 System.err.println(reporter); // print errors
} else { // no errors found
 StringWriter wr = new StringWriter();
 new Yaml().dump(json, wr); // convert JSON to YAML source wr.close();
 String resultYaml = swr.toString();
 System.out.println(resultYaml);
}

Note you can try to run YAML data on https://xdef.syntea.cz/tutorial/examples/json.html.

https://xdef.syntea.cz/tutorial/examples/json.html
https://xdef.syntea.cz/tutorial/examples/json.html

X-definition 4.2 Language Description

88 / 104 Version: 4.2.2.26, Date: 2024-03-31

Appendix A: X-definition of X-definition 4.2
X-definition language enables the description of X-definition using X-definition. Note that macros mustn't be
specified there and must be processed previously. Here is an X-definition of X-definition:

<!--
 The description of the XML document which must fit the X-definition 4.2
 specification.
 The meta namespace of X-definition ("METAXD" is http://www.xdef.org/xdef/4.2).
 The prefix of objects describing the X-definition 4.2 is XD4.2.
-->

<xd:def xmlns:xd = "METAXD"
 name = "Ver4.2"
 root = "XD4.2:def | XD4.2:collection | XD4.2:lexicon
 | XD4.2:declaration | XD4.2:BNFGrammar | XD4.2:component"
 xmlns:XD4.2 = "http://www.xdef.org/xdef/4.2"
 xmlns:w = "http://www.xdef.org/xdef/4.2"
 w:metaNamespace = "METAXD" >

/**/
/*X-definition of X-definitions ver 4.2, metanamespace: METAXD, prefix: XD4.2 */
/**/

 <XD4.2:collection xd:script = "init NS = @metaNamespace
 ? (String) @metaNamespace : 'http://www.xdef.org/xdef/4.2';
 options moreAttributes"
 include = "optional uriList; options acceptQualifiedAttr"
 metaNamespace = "optional uri; options acceptQualifiedAttr"
 xd:attr = "occurs * getAttrName().startsWith('impl-');">
 <xd:mixed>
 <!-- Here may be objects from all versions of X-definition -->
 <XD4.2:def xd:script = "occurs *; ref XD4.2:def" />
 <XD4.2:declaration xd:script = "occurs *; ref XD4.2:declaration" />
 <XD4.2:BNFGrammar xd:script = "occurs *; ref XD4.2:BNFGrammar" />
 <XD4.2:component xd:script = "occurs *; ref XD4.2:component"/>
 <XD4.2:lexicon xd:script = "occurs *; ref XD4.2:lexicon" />
 </xd:mixed>
 </XD4.2:collection>

 <XD4.2:def xd:script = "init NS = @metaNamespace
 ? (String) @metaNamespace : 'http://www.xdef.org/xdef/4.2';
 options moreAttributes"
 name = "optional QName; options acceptQualifiedAttr"
 metaNamespace = "optional uri; options acceptQualifiedAttr"
 root = "optional rootList; options acceptQualifiedAttr"
 include = "optional uriList; options acceptQualifiedAttr"
 script = "optional xdefScript; options acceptQualifiedAttr"
 importLocal = "optional importLocal; options acceptQualifiedAttr"
 xd:attr = "occurs * getAttrName().startsWith('impl-');">
 <!-- Names of other attributes (see xd:attr) must start with "impl-" -->

 <xd:mixed>
 <XD4.2:macro xd:script = "occurs *; ref XD4.2:macro" />
 <XD4.2:declaration xd:script = "occurs *; ref XD4.2:declaration"
 scope = "optional enum('global','local'); options acceptQualifiedAttr"/>
 <XD4.2:lexicon xd:script = "occurs *; ref XD4.2:lexicon" />
 <XD4.2:BNFGrammar xd:script = "occurs *; ref XD4.2:BNFGrammar"/>
 <XD4.2:component xd:script = "occurs *; ref XD4.2:component"/>
 <xd:choice occurs = "*">
 <XD4.2:choice xd:script = "occurs *;
 match @name || @XD4.2:name; ref XD4.2:choiceDef"
 name = "required QName; options acceptQualifiedAttr" />
 <XD4.2:mixed xd:script = "occurs *;
 match @name || @XD4.2:name; ref XD4.2:mixedDef"
 name = "required QName; options acceptQualifiedAttr" />
 <XD4.2:sequence xd:script = "occurs *;
 match @name || @XD4.2:name; ref XD4.2:sequenceDef"
 name = "required QName; options acceptQualifiedAttr" />
 <XD4.2:list xd:script = "occurs *;
 match @name || @XD4.2:name; ref XD4.2:listDef"
 name = "required QName; options acceptQualifiedAttr" />

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 89 / 104

 <XD4.2:json xd:script = "occurs *;"
 name = "required QName; options acceptQualifiedAttr" >
 required jsonScript;
 </XD4.2:json>
 <XD4.2:any xd:script = "occurs *; match @XD4.2:name; ref XD4.2:anyDef;
 options moreAttributes, moreElements"
 XD4.2:name = "required QName;" />
 <xd:any xd:script = "occurs *; ref xelement" />
 optional valueScript;
 </xd:choice>
 </xd:mixed>

 </XD4.2:def>

 <XD4.2:macro xd:script = "occurs *; options moreAttributes"
 name = "required QName; options acceptQualifiedAttr"
 xd:attr = "occurs * string()" >
 optional string();
 </XD4.2:macro>

 <XD4.2:declaration>
 <xd:mixed>
 <XD4.2:macro xd:script = "occurs *; ref XD4.2:macro" />
 ? declarationScript;
 </xd:mixed>
 </XD4.2:declaration>

 <XD4.2:BNFGrammar extends="optional xdIdentifier; options acceptQualifiedAttr"
 name = "xdIdentifier; options acceptQualifiedAttr"
 scope = "optional enum('global','local'); options acceptQualifiedAttr">
 optional bnfGrammar; /* may be nothing */
 </XD4.2:BNFGrammar>

 <XD4.2:component>
 required X-component;
 </XD4.2:component>

 <XD4.2:lexicon language = "javaIdentifier" default = "optional yesNo">
 optional thesaurus();
 </XD4.2:lexicon>

 <!-- model of element -->
 <xelement xd:script = "match getNamespaceURI() NE NS; options moreAttributes"
 xd:attr = "occurs * attributeScript"
 xd:text = "occurs * valueScript"
 XD4.2:script = "optional elementScript" >
 <xd:choice occurs = "*" ref = "xcontent" />
 </xelement>

 <xd:choice name = "xcontent">
 <XD4.2:choice xd:script = "occurs *;
 match @ref || @XD4.2:ref; ref XD4.2:choiceRef" />
 <XD4.2:choice xd:script = "occurs *; ref XD4.2:choiceDef" />
 <XD4.2:mixed xd:script = "occurs *;
 match @ref || @XD4.2:ref; ref XD4.2:mixedRef" />
 <XD4.2:mixed xd:script = "occurs *; ref XD4.2:mixedDef" />
 <XD4.2:sequence xd:script = "occurs *;
 match @ref || @XD4.2:ref; ref XD4.2:sequenceRef" />
 <XD4.2:sequence xd:script = "occurs *; ref XD4.2:sequenceDef" />
 <XD4.2:list xd:script = "occurs *;
 match @ref || @XD4.2:ref; ref XD4.2:listRef"/>
 <XD4.2:any xd:script = "occurs *; match @XD4.2:ref; ref XD4.2:anyRef"/>
 <XD4.2:any xd:script = "occurs *; match !@XD4.2:ref; ref xelement"/>
 <xd:any xd:script = "occurs *; ref xelement" />
 <XD4.2:text> optional valueScript; </XD4.2:text>
 optional valueScript;
 </xd:choice>

 <XD4.2:choiceRef occurs = "optional Occurrence; options acceptQualifiedAttr"
 create = "optional elementCreateCode; options acceptQualifiedAttr"
 ref = "required xposition; options acceptQualifiedAttr"
 script = "optional string; options acceptQualifiedAttr" />

 <XD4.2:choiceDef occurs = "optional Occurrence; options acceptQualifiedAttr"
 create = "optional elementCreateCode; options acceptQualifiedAttr"

X-definition 4.2 Language Description

90 / 104 Version: 4.2.2.26, Date: 2024-03-31

 ref = "illegal; options acceptQualifiedAttr"
 script = "optional groupScript; options acceptQualifiedAttr" >
 <xd:choice ref = "xcontent" occurs = "*" />
 </XD4.2:choiceDef>

 <XD4.2:sequenceRef occurs = "optional Occurrence; options acceptQualifiedAttr"
 create = "optional elementCreateCode; options acceptQualifiedAttr"
 ref = "required xposition; options acceptQualifiedAttr"
 script = "optional groupScript; options acceptQualifiedAttr" />

 <XD4.2:sequenceDef occurs = "optional Occurrence; options acceptQualifiedAttr"
 create = "optional elementCreateCode; options acceptQualifiedAttr"
 ref = "illegal; options acceptQualifiedAttr"
 script = "optional groupScript; options acceptQualifiedAttr" >
 <xd:choice ref = "xcontent" occurs = "*" />
 </XD4.2:sequenceDef>

 <XD4.2:mixedRef ref = "required xposition; options acceptQualifiedAttr"
 empty = "optional booleanLiteral; options acceptQualifiedAttr"
 create = "optional elementCreateCode; options acceptQualifiedAttr"
 script = "optional groupScript; options acceptQualifiedAttr" />

 <XD4.2:mixedDef ref = "optional xposition; options acceptQualifiedAttr"
 empty = "optional booleanLiteral; options acceptQualifiedAttr"
 create = "optional elementCreateCode; options acceptQualifiedAttr"
 script = "optional groupScript; options acceptQualifiedAttr" >
 <xd:choice xd:script = "*; ref xcontent;" />
 </XD4.2:mixedDef>

 <XD4.2:listRef ref = "required xposition; options acceptQualifiedAttr" />

 <XD4.2:listDef ref = "illegal; options acceptQualifiedAttr">
 <xd:choice xd:script = "*; ref xcontent;" />
 </XD4.2:listDef>

 <XD4.2:anyDef XD4.2:name = "required QName"
 XD4.2:script = "optional groupScript;
 options moreAttributes, moreElements" />

 <XD4.2:anyRef XD4.2:script = "optional groupScript;
 options moreAttributes, moreElements" />

/**/
/* Declaration of value types. */
/**/
<xd:declaration>
 /* Variable NS is used as the namespace of the checked source.*/
 String NS;

/**/
/* Types of values see BNF grammar below */
/**/
 type rootList XDScript.rule('RootList');
 type xdefScript XDScript.rule('XdefScript');
 type declarationScript XDScript.rule('DeclarationScript');
 type valueScript XDScript.rule('ValueScript');
 type attributeScript XDScript.rule('AttributeScript');
 type elementScript XDScript.rule('ElementScript');
 type groupScript XDScript.rule('ElementScript');
 type groupModelScript XDScript.rule('ElementScript');
 type Occurrence XDScript.rule('Occurrence');
 type elementCreateSection XDScript.rule('ElementCreateSection');
 type elementCreateCode XDScript.rule('ElementCreateCode');
 type xdIdentifier XDScript.rule('Identifier');
 type xposition XDScript.rule('XPosition');
 type booleanLiteral XDScript.rule('BooleanLiteral');
 type bnfGrammar XDScript.rule('BNFGrammar');
 type X-component XDScript.rule('XCComponent');
 type languageId XDScript.rule('LanguageId');
 type javaIdentifier XDScript.rule('JavaIdentifier');
 type yesNo XDScript.rule('YesNo');
 type thesaurus XDScript.rule('Lexicon');
 type importLocal XDScript.rule('importLocal');
 type jsonScript XDScript.rule('JSONScript');
 type iniprops XDScript.rule('INIProps');

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 91 / 104

 /** Check element name and namespace URI (used in match section) */
 boolean xdName(String name) {
 return getElementLocalName() EQ name AND getNamespaceURI() EQ NS;
 }
</xd:declaration>

/**/
/* Declaration of BNF grammar for X-script */
/**/

 <xd:BNFGrammar name = "XDScript">
<![CDATA[

/**/
/* X-script BNF grammar rules */
/* */
/* Note the inline BNF method "$rule" is used to generate code for the */
/* compiler of X-definitions. To understand the syntax you can simply */
/* ignore them. */
/**/

Letter ::= $letter /* any letter.*/

Char ::= $xmlChar /* any XML character.*/

WhiteSpace ::= [#9#10#13]

Comment ::= "/*" ([^*]+ | "*" - "*/")* "*/"

S ::= (WhiteSpace | Comment)+ /* Sequence of whitespaces or comments */

Digit ::= [0-9]

Digits ::= [0-9]+

HexaDigit ::= Digit | [a-fA-F]

HexaDigits ::= (Digit | [a-fA-F])+

SemicolonOrSourceEnd ::= S? (";" S? | $eos)
 /* At the end of source text the semicolon is not required. */

/* Keywords of the X-script */
Keyword ::= "if" | "else" | "do" | "while" | "continue" | "break" | "switch"
 | "case" | "for" | "return" | "def" | "try" | "catch" | "throw" | "finally"
 /* | "fixed" */ | "external" | "new" | "required" | "optional" | "ignore"
 | "illegal" | "occurs" | "onTrue" | "onError" | "onAbsence" | "default"
 | "onExcess" | "onStartElement" | "onIllegalAttr" | "onIllegalText" | "var"
 | "onIllegalElement" | "onIllegalRoot" | "onXmlError" | "create" | "init"
 | "options" | "option" | "ref" | "match" | "final" | "forget" | "template"
 | "type" | "uniqueSet" | "EQ" | "NE" | "LT" | "LE" | "GT" | "GE" | "LSH"
 | "RSH" | "RRSH" | "AND" | "OR" | "XOR" | "MOD" | "NOT" | "NEG" | "OOR"
 | "AAND" | "CHECK" | "true" | "false" | "implements" | "extends" | "onFalse"
 | "$$$script"
 /* Note "fixed" is not the keyword since it is used also as the name of
 validation method. */

/* Predefined constants */
PredefinedConstant ::= ("$MAXFLOAT" | "$MAXINT" | "$MININT" | "$MINFLOAT" |
 "$PI" |"$E" | "$NEGATIVEINFINITY" | "$POSITIVEINFINITY" | "null") $rule

Identifier ::= JavaIdentifier - Keyword

LanguageId ::= [a-z] {2,3}

YesNo ::= "yes" | "no"

JavaIdentifier ::= ((Letter | "_" | "$") (Letter | Digit | "_" | "$")*)

RawIdentifier ::= (Letter | "_") (Letter | Digit | "_")*

QualifiedIdentifier ::= JavaIdentifier ("." JavaIdentifier)+ | JavaIdentifier

BooleanLiteral ::= ("true" | "false") $rule

X-definition 4.2 Language Description

92 / 104 Version: 4.2.2.26, Date: 2024-03-31

DecimalInteger ::= ("_"* Digits)+ ("_")*

IntegerLiteral ::= (("0" [DdIi])? DecimalInteger
 | "0" [Xx] ("_"* HexaDigits)+ ("_")*) $rule
 /* Inside a number specification it is possible to insert the character "_".
 This character does not influence the value of the number, it just makes
 a number more readable. E.g. the number 123456789 you can be written
 as 123_456_789 (or 0x0f123456 as 0x0f_12_34_56). */

FloatLiteral ::= (("0" [Dd]) DecimalInteger "." DecimalInteger?)
 | ((DecimalInteger ("." DecimalInteger Exponent? | Exponent))) $rule

Exponent ::= [Ee] [-+]? [0-9]+

NumberLiteral ::= FloatLiteral | IntegerLiteral

SpecChar ::= "\" ("\" | '"' | "'" | "n" | "r" | "t") | UnicodeCharSpecification

UnicodeCharSpecification ::= "\u" HexaDigit{4}

StringLiteral ::= ("'" ("''" | [^'\] | SpecChar)* "'" |
 '"' ('""' | [^"\] | SpecChar)* '"') $rule
 /* The opening and closing delimiter must be either """ or "'". The occurrence
 of this delimiter inside of literal can be recorded as a double delimiter
 or in the form of SpecChar. */

Literal ::= BooleanLiteral | NumberLiteral | StringLiteral

XMLName ::= $xmlName /* XMLName see XML specification */

KeyName ::= "%" XMLName

AttributeName ::= "@" XMLName

XDefName ::= XMLName

XModelName ::= XMLName

importLocal ::= S? ((XMLName | "#") S? ("," S? (XMLName | "#") S?)*)?

XPosition ::= (XDefName? "#")? XModelName
 ("/" (XMLName | XGroupRererence | XAnyReference) XPositionIndex?)*
 ("/" (XAttrReference | XTextReference))?

XPositionIndex ::= "[" Digits "]"

XGroupRererence ::= "$mixed" | "$choice" | "$sequence"

XAnyReference ::= "$any"

XAttrReference ::= "@" XMLName

XTextReference ::= "$text" XPositionIndex?

RootList ::= S? RootSpecification (S? "|" S? RootSpecification)* S?
 /* all root specifications in the list must be unique */

RootSpecification ::= XPosition | "*"

ExternalMethodType ::= QualifiedIdentifier (S?"[" S? "]")?

ExternalMethod ::= ExternalMethodType S? QualifiedIdentifier S?
 "(" S? ExternalMethodParamList? S? ")" S? ("as" S? Identifier)?

ExternalMethodParam ::= ExternalMethodType (S JavaIdentifier)?
 /* the parameter name (JavaIdentifier) is optional and ignored */

ExternalMethodParamList ::= ExternalMethodParam (S? "," S? ExternalMethodParam)*

MacroReference ::= "$" "{" S? XMLName S? MacroParams? S? "}"

MacroParams ::= "(" S? Identifier (S? "," S? Identifier)* S? ")"

/**/

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 93 / 104

/* Script expression */
/**/

Expression ::= Expr1 (S? "?" S? Expression S? ":" S? Expression)?

OperatorLevel_1 ::= ("AND" | "AAND" | "&&" | "&") $rule

Expr1 ::= Expr2 (S? OperatorLevel_1 S? Expr2)*

OperatorLevel_2 ::= ("OR" | "OOR" | "XOR" | "||" | "|" | "^") $rule

Expr2 ::= Expr3 (S? OperatorLevel_2 S? Expr3)*

OperatorLevel_3 ::= ("LT" | "<" | "GT" | ">" | "==" | "EQ" | "LE"
 | "<=" | "GE" | ">=" | "!=" | "NE" | "<<" | "LSH" | ">>" | "RSH" | ">>>"
 | "RRSH" | "CHECK") $rule

Expr3 ::= Expr4 (S? OperatorLevel_3 S? Expr4)*

OperatorLevel_4 ::= ("*" | "/" | "%") $rule

Expr4 ::= Expr5 (S? OperatorLevel_4 S? Expr5)*

OperatorLevel_5 ::= ("+" | "-") $rule

Expr5 ::= Expr (S? OperatorLevel_5 S? Expr)*

Expr ::= (UnaryOperator S? | CastRequest S?)*
 (Value | Literal | "(" S? Expression S? ")") (S? "." S? Method)?

ConstantExpression ::= Literal /* ConstantExpression must be a Literal. */

CastRequest ::= S? "(" S? $rule TypeIdentifier S? ")" S?

UnaryOperator ::= "+" | ("-" | "!" | "NOT" | "~") $rule

TypeIdentifier ::= ("int" | "String" | "float" | "boolean" | "char" | "Datetime"
 | "Decimal" | "Duration" | "Exception" | "Container" | "Element" | "Message"
 | "Bytes" | "XmlOutStream" | "BNFGrammar" | "BNFRule" | "Parser" | "Service"
 | "ResultSet" | "Statement" | "ParseResult" | "Locale" | "uniqueSetKey"
 | "AnyValue" | "Output" | "Input" | "NamedValue" | "Regex" | "GPSPosition"
 | "Price" | "Telephone" | "URI" | "EmailAddr") $rule

Value ::= (Constructor | PredefinedConstant | Increment
 | Method | VariableReference | KeyParameterReference | Literal | AttributeName
 | $rule AssignmentStatement)

NewValue ::= "new" S $rule TypeIdentifier S? ParameterList

Constructor ::= NewValue | NamedValue | ContainerValue

NamedValue ::= KeyName S? "=" S? Expression

ContainerValueStart ::= (NamedValue (S? "," S? NamedValue)*) | Expression

ContainerValue ::= "[" S? (ContainerValueStart (S? "," S? Expression)*)? S? "]"

KeyParameterReference ::= KeyName

Method ::= (SchemaTypeName | (QualifiedIdentifier - Keyword)) $rule
 S? ParameterList?

SchemaTypeName ::= "xs:" Identifier /* prefix “xs:” is deprecated */

incAfter ::= ("++" | "--") S? $rule VariableReference

incBefore ::= VariableReference S? ("++" | "--") S? $rule

Increment ::= incAfter | incBefore
 /* The type VariableReference must be an integer or a float */

Parameter ::= (Expression | "*") $rule

ParameterList ::= "(" S? (Parameter
 (S? "," S? Parameter)* (S? "," S? "*")? S?)? ")" $rule

X-definition 4.2 Language Description

94 / 104 Version: 4.2.2.26, Date: 2024-03-31

VariableReference ::= (Identifier - TypeIdentifier) $rule

MethodDeclaration ::= ("void" | TypeIdentifier) $rule
 S DeclaredMethodName S? ParameterListDeclaration S? Block

DeclaredMethodName ::= Identifier $rule

ParameterListDeclaration ::=
 "(" S? (SeqParameter (S? "," S? SeqParameter)*)? ")" $rule

SeqParameter ::= TypeIdentifier S ParameterName

KeyParameter ::= KeyName S? "=" S? (TypeIdentifier | ConstantExpression)

ParameterName ::= Identifier

ParentalExpression ::= S? "(" S? Expression S? ")" S?
 /* Result of ParentalExpression must be boolean. */

StatementExpression ::= Expression

/**/
/* Script statement */
/**/

Statement ::= S? (Statement1 | Statement2)

Statement1 ::= (Block | SwitchStatement | TryStatement)

Statement2 ::= (IfStatement | ForStatement | WhileStatement | DoStatement
 | ReturnStatement | ThrowStatement | BreakStatement | ContinueStatement
 | Method (S? "." S? Method)? | Increment | AssignmentStatement)
 $info | EmptyStatement

EmptyStatement ::= ";"

StatementSequence ::= (S? VariableDeclaration S? ";" S? | Statement)*

Block ::= "{" StatementSequence S? "}"

SimpleStatement ::= S? (Statement1 | (Statement2 S? (";" S?)?)) | EmptyStatement

IfStatement ::= "if" ParentalExpression SimpleStatement
 (S? "else" S? SimpleStatement)?

ForStatement ::= "for" $rule S? "(" S? ForInit? S? ";" S?
 ForBooleanExpression? S? ";" S? ForStep? S? ")" S? SimpleStatement

ForBooleanExpression ::= $rule Expression

ForInit ::= $rule (AssignmentStatement | VariableDeclaration)

ForStepStatement ::= $rule (Method | Increment | AssignmentStatement)

ForStep ::= ForStepStatement (S? "," S? ForStepStatement)*

WhileStatement ::= "while" $rule ParentalExpression SimpleStatement

DoStatement ::= "do" $rule (S? Block | S Statement) WhileCondition

WhileCondition ::= S? "while" $rule ParentalExpression

SwitchStatement ::= "switch" $rule S? "(" S? Expression S? ")" S?
 "{" SwitchBlockStatementVariant* S? "}"
 /* Result of Expression must be integer or string. Each variant may occur
 in the switch statement only once. */

SwitchBlockStatementVariant ::=
 S? (DefaultVariant | CaseVariant) S? ":" S? StatementSequence?
 /* The type of ConstantExpression must be integer or string. */

DefaultVariant ::= "default" S? $rule

CaseVariant ::= "case" S? $rule ConstantExpression

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 95 / 104

ThrowStatement ::= "throw" S? $rule ExceptionValue

ExceptionValue ::= NewException | Identifier

NewException ::= "new" S? $rule "Exception" S? "(" S? (Expression S?)? ")"

TryStatement ::= "try" S? $rule "{" S? StatementSequence S? "}"
 S? CatchStatement

CatchStatement ::=
 "catch" S? $rule "(" S? "Exception" S? Identifier S? ")" S?
 "{" S? StatementSequence S? "}"

ReturnStatement ::= "return" $rule (S? Expression)?

BreakStatement ::= "break" $rule (S? Identifier)?

ContinueStatement ::= "continue" $rule (S? Identifier)?

AssignmentStatement ::= (Identifier S? ((AssignmentOperator S? Expression) |
 (("=" S? Identifier))+ S? (AssignmentOperator S? Expression)) |
 S? AssignmentOperator S? Expression)

AssignmentOperator ::= (("|" | "OR" | "^" | "+" | "-" | "*" | "/" | "&" | "AND"
 | "%" | "<<" | "LSH" | ">>>"| "RRSH" | ">>" | "RSH")? "=") $rule

VariableModifier ::= ("final" | "external") $rule S

VariableDeclaration ::= VariableModifier*
 TypeIdentifier S VariableDeclarator (S? "," VariableDeclarator)*

VariableDeclarator ::= S? (AssignmentStatement | Identifier)

Occurrence ::= ("occurs" S)? ("required" | "optional" | "ignore" | "illegal"
 | "*" | "+" | "?" | ("*" | "+" | "?" |
 (IntegerLiteral (S? ".." (S? ("*" | IntegerLiteral))?)?))) $rule
 /* The value of the second IntegerLiteral (after "..") must be greater or
 equal to the first one. */

ExplicitCode ::= Block
 /* If the result value is required it must be returned by the command
 "return" */

/**/
/* Script of X-definition header */
/**/

XdefScript ::= (S | XdefInitSection | XdefOnIllegalRoot | XdefOnXmlError
 | XdefOptions | ";")*
 /* Each item can be specified only once. */

XdefInitSection ::= "init" S Statement

XdefOnIllegalRoot ::= "onIllegalRoot" S Statement

XdefOnXmlError ::= "onXmlError" S Statement

XdefOptions ::= ("options" | "option") S XdefOptionsList

XdefOptionsList ::= XdefOption (S? "," S? XdefOption)*
 /* Each option can be specified only once. */

XdefOption ::= "moreAttributes" | "moreElements" | "moreText"
 | "forget" | "notForget" | "clearAdoptedForgets"
 | "resolveEntities" | "ignoreEntities" | "resolveIncludes" | "ignoreIncludes"
 | "preserveComments" | "ignoreComments" | "acceptEmptyAttributes"
 | "preserveEmptyAttributes" | "ignoreEmptyAttributes"
 | "preserveAttrWhiteSpaces" | "ignoreAttrWhiteSpaces"
 | "preserveTextWhiteSpaces" | "ignoreTextWhiteSpaces"
 | "setAttrUpperCase" | "setAttrLowerCase"
 | "setTextUpperCase" | "setTextLowerCase"
 | "acceptQualifiedAttr" | "notAcceptQualifiedAttr"
 | "trimAttr" | "noTrimAttr" | "trimText" | "noTrimText"
 | "resolveEntities" | "ignoreEntities" | "resolveIncludes" | "ignoreIncludes"

X-definition 4.2 Language Description

96 / 104 Version: 4.2.2.26, Date: 2024-03-31

 | "preserveComments" | "ignoreComments"

/**/
/* Script of text nodes and attributes */
/**/

AttributeScript ::= ValueScript

ValueScript ::= ("$$$script:"?) (ValueValidationSection | ValueInitSection
 | ValueOnTrueSection | ValueOnFalseSection | ValueOnErrorSection
 | ValueOnAbsenceSection | ValueDefaultSection | ValueCreateSection
 | ValueFinallySection | ValueMatchSection | AttributeOnStartSection
 | AttributeOptions | OnIllegalSection | Reference | S |";")*
 /* The keyword "$$$script" can be specified only in the template mode.
 Each section can be specified only once.*/

OnIllegalSection ::= ("onIllegalAttr" | "onIllegalText") S? Statement?

AttributeOnStartSection ::= "onStartElement" S? Statement?

ValueValidationSection ::= ("fixed"S $rule (Expression | Block)
 | (Occurrence S? (";"S?)? CheckValueSpecification?) | CheckValueSpecification)

CheckValueSpecification ::= ExplicitCode | ValidationExpression | TypeMethodName
 /* ExplicitCode must return a value of boolean type or ParseResult. */

ValidationExpression ::= ValidationMethod | Expression
 /* Result of ValidationExpression must be a boolean or ParseResult type. */

ValidationMethod ::= SchemaValidationMethod | XDValidationMethod

SchemaValidationMethod ::= ParseMethod

XDValidationMethod ::= ParseMethod

ParseMethod ::= Method

TypeMethodName ::= Identifier

ValueInitSection ::= "init" S? (ExplicitCode | Statement)

ValueOnTrueSection ::= "onTrue" S? (ExplicitCode | Statement)
 /* If Method or ExplicitCode returns a value, it will be ignored. */

ValueOnFalseSection ::= "onFalse" S? (ExplicitCode | Statement)

ValueOnErrorSection ::= "onError" S? (ExplicitCode | Statement)

ValueOnAbsenceSection ::= "onAbsence" S? (ExplicitCode | Statement)

ValueCreateSection ::= "create" S? (ExplicitCode | ValueCreateExpression)
 (S? ";")* /* ExplicitCode must return a value of String type. */

ValueCreateExpression ::= Expression
 /* ValueCreateExpression must return a value of String type. */

ValueDefaultSection ::= "default" S? (ExplicitCode | Expression)
 /* Expression or ExplicitCode must return the value of the String. */

ValueFinallySection ::= "finally" S? Statement

ValueMatchSection ::= "match" S? (Expression | ExplicitCode)
 /* Expression or ExplicitCode must here return a value of boolean type. */

AttributeOptions ::= ValueOptions

ValueOptions ::= ("options" | "option") S? ValueOptionsList

ValueOptionsList ::= ValueOption (S? "," S? ValueOption)*
 /* Each option can be specified only once. */

ValueOption ::= "preserveTextWhiteSpaces" | "ignoreTextWhiteSpaces"
 | "setTextUpperCase" | "setTextLowerCase" | "trimText" | "noTrimText"
 | "preserveAttrWhiteSpaces" | "ignoreAttrWhiteSpaces" | "cdata"
 | "setAttrUpperCase" | "setAttrLowerCase" | "trimAttr" | "noTrimAttr"

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 97 / 104

 | "ignoreEmptyAttributes" | "acceptEmptyAttributes"
 | "acceptQualifiedAttr" | "notAcceptQualifiedAttr" | "preserveTextCase"

Reference ::= "ref" S XPosition

/**/
/* Script of elements */
/**/

ElementScript ::= $info ElementExecutivePart* S?

ElementExecutivePart ::= "$$$script:"? S? (TemplateSection | Occurrence
 | ElementVarSection | ElementMatchSection | ElementInitSection
 | ElementOnAbsenceSection | ElementOnExcessSection | ElementCreateSection
 | ElementFinallySection | ElementOptions | Reference | ElementForgetSection
 | ElementOnStartSection | ElementOnIllegalSection | ElementStructureCompare
 | ";")
 /* Each item can be specified only once. If the occurrence is not specified,
 the implicit value is "required". The keyword "$$$script" can be specified
 only in the template model. */

TemplateSection ::= "template" $rule

ElementVarSection ::= "var" S?
 (("{"(S? ElementVarSectionItem S?)* "}") | ElementVarSectionItem S?)

ElementVarSectionItem ::= TypeDeclaration | VariableDeclaration S? ";" | S? ";"

ElementInitSection ::= "init" S? Statement?

ElementMatchSection ::= "match" S? (Expression | ExplicitCode)
 /* Expression or ExplicitCode must here return a value of boolean type. */

ElementOnStartSection ::= "onStartElement" S? Statement?

ElementOnExcessSection ::= "onExcess" S? Statement?

ElementOnAbsenceSection ::= "onAbsence" S? Statement?

ElementOnIllegalSection ::= "onIllegalElement" S? Statement?

ElementCreateSection ::= "create" ElementCreateCode

ElementCreateCode ::= S? (Expression | ExplicitCode) S?
 /* Expression or ExplicitCode must return a value of Container or Element. */

ElementFinallySection ::= "finally" S? Statement?

ElementForgetSection ::= "forget"

ElementStructureCompare ::= ("implements" | "uses") S XPosition

ElementOptions ::= ("options" | "option") S? ElementOptionsList

ElementOptionsList ::= ElementOption (S? "," S? ElementOption)*
 /* Each option can be specified only once. */

ElementOption ::= "moreAttributes" | "moreElements" | "moreText"
 | "forget" | "notForget" | "acceptEmptyAttributes" | "clearAdoptedForgets"
 | "preserveEmptyAttributes" | "ignoreEmptyAttributes"
 | "preserveAttrWhiteSpaces" | "ignoreAttrWhiteSpaces"
 | "preserveTextWhiteSpaces" | "ignoreTextWhiteSpaces" | "setAttrUpperCase"
 | "setAttrLowerCase" | "setTextUpperCase" | "setTextLowerCase"
 | "acceptQualifiedAttr" | "notAcceptQualifiedAttr" | "trimAttr" | "noTrimAttr"
 | "trimText" | "noTrimText" | "resolveEntities" | "ignoreEntities"
 | "resolveIncludes" | "ignoreIncludes" | "preserveComments" | "ignoreComments"
 | "preserveTextCase" | "preserveAttrCase" | "acceptOther" | "ignoreOther"
 | "clearReports" | "preserveReports" | "nillable" | "noNillable"

/**/
/* Script of the declaration part */
/**/

DeclarationScript ::= (S? (TypeDeclaration | ExternalMethodDeclaration
 | VariableDeclaration | MethodDeclaration | ";"))* S?

X-definition 4.2 Language Description

98 / 104 Version: 4.2.2.26, Date: 2024-03-31

TypeDeclaration ::= ("type" S Identifier S?
 ((Identifier (S? "CHECK" ? Expression)? S? ";" S?)
 | TypeDeclarationBody))
 | UniqueSetDeclaration

TypeDeclarationBody ::= TypeExplicitCode
 | (Expression (S? "CHECK" ? Expression)?)
 /* The first expression must return either a boolean
 or a ParseResult value. The CHECK expression must return a boolean value*/

TypeExplicitCode ::= /* only X-definition version 2.0 */
 ("{" S? "parse" S? ":" S? (ExplicitCode | Statement ";"?) S? "}")
 | /* X-definition version 3.1 and higher */ ExplicitCode

ExternalMethodDeclaration ::= "external" S "method"
 (S? "{" S? (ExternalMethod S? ";" S?)* ExternalMethod? S? ";"? S? "}"
 | (S ExternalMethod)) S? ";"?

UniqueSetDeclaration ::= "uniqueSet" S Identifier S? UniqueSetDeclarationBody

UniqueSetDeclarationBody ::=
 ("{" UniqueSetItem (S?";" UniqueSetItem)* (S?";"S?)? S? "}") | Method
 /* The method must be a parser. */

UniqueSetItem ::= S? (UniqueSetVar | UniqueSetKey)

UniqueSetKey ::= S? Identifier (S? ":" S? (("?" | "optional") S?)? Method)?
 /* The method must be a parser. */

UniqueSetVar ::= S? "var" S TypeIdentifier S Identifier
 (S? "," S? TypeIdentifier S Identifier)*

/**/
/* BNF grammar */
/**/

BNFGrammar ::= S? BNFMethodDeclarationSection? BNFRules S?

BNFMethodDeclarationSection ::= BNFMethodDeclaration (S? BNFMethodDeclaration)*

BNFMethodDeclaration ::= "%define" S BNFDefinedMethodName S? ":"
 S ("$" QualifiedIdentifier | BNFDefinedMethodName) S? BNFMethodparameters?

BNFMethodparameters ::= "(" S?
 (BNFMethodparameter (S? "," S? BNFMethodparameter)*) ? S? ")"

BNFMethodparameter ::= Digits | BNFTerminalSymbol

BNFDefinedMethodName ::= "$" (BNFRuleName | Digits)

BNFRuleName ::= RawIdentifier

BNFRule ::= BNFRuleDecl BNFExpression

BNFRules ::= BNFRule (BNFRule)*

BNFRuleDecl ::= S? BNFRuleName S? "::=" S?

BNFRuleReference ::= BNFDefinedMethodName | (BNFRuleName - BNFRuleDecl)

BNFTerminalSymbol ::= "'" [^']* "'" | '"' [^"]* '"'
 | (BNFHexaCharacter (S? BNFHexaCharacter)*)

BNFHexaCharacter ::= "#" HexaDigits

BNFQuantifier ::= S? ("+" | "*" | "?" | BNFExplicitQuantifier)

BNFExplicitQuantifier ::= "{" S? Digits (S? "," S? Digits)? S? "}"

BNFSet ::= "[" ("^"? Char - "]")* "]" BNFQuantifier?

BNFTerm ::= (BNFTerminalSymbol | BNFSet | BNFRuleReference) BNFQuantifier?
 | BNFParentalExpr

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 99 / 104

BNFParentalExpr ::= "(" S? BNFUnion S? ")" S? BNFQuantifier?

BNFSequence ::= BNFTerm (S? BNFTerm)*

BNFRestriction ::= BNFSequence (S? "-" S? BNFTerm)?

BNFAll ::= BNFRestriction (S? "," S? BNFRestriction)*

BNFUnion ::= BNFAll (S? "|" S? BNFAll)*

BNFExpression ::= (BNFUnion S?)+

/**/
/* X-component */
/**/

JavaTypeName ::= '<' S? $JavaQName (S? JavaTypeName)?
 (S? "," S? JavaTypeName)* S? '>'

JavaTypedQName ::= $JavaQName (S? JavaTypeName)?

XCComponent ::= S? (XCComponentCommand
 (S? ";" S? XCComponentCommand?)*)

XCComponentCommand ::= (XCBind | XCClass | XCEnum | XCInterface | XCRef)

XCBind ::= "%bind" S XMLName (S? "%with" S $JavaQName)? S? XCLink

XCClass ::= "%class" S JavaTypedQName
 (S "extends" S JavaTypedQName (S? "<" JavaTypedQName ">")?)?
 (S "implements" S JavaTypedQName (S? "," S? JavaTypedQName)*)?
 (S "%interface" S JavaTypedQName)? S? (XCWith)? (XCLink)?

XCWith ::= "%with" S JavaTypedQName

XCEnum ::= "%enum" S JavaTypedQName S (Identifier? "#")? XMLName

XCInterface ::= "%interface" S $JavaQName S? XCLink

XCRef ::= "%ref" S ((JavaTypedQName S XCLink)
 | ("%enum" S JavaTypedQName S (Identifier? "#")? XMLName))

XCLink ::= "%link" S ("*" | XPosition (S? "," S? XPosition)*)

/**/
/* Lexicon grammar rules */
/**/

Lexicon ::= (S? $rule XPosition S? "=" S? XMLName)* S?

/**/
/* INI/Properties grammar rules */
/**/

INISP ::= [#9]+

ININewLine ::= (#13 #10 | #10)+

INIOctalDigit ::= [0-7]

INIEscapedChar ::=
 "\" (INIOctalDigit | "n" | "t" | "t" | "f" | ":" | HexaDigit{4})

INIBaseChar ::= INISP | [-Z^-~]/*ASCII - newline,backslash*/

INIChar ::= INIEscapedChar | INIBaseChar

INISeparator ::= (ININewLine | INISP)*

INICommand ::= INISeparator (INIComment | INIProp | INISection) INISeparator

INIComment ::= "#" INIChar*

INIProp ::= INISP? (INIChar - "=")+ INISP? "=" (INIChar - ININewLine)*

X-definition 4.2 Language Description

100 / 104 Version: 4.2.2.26, Date: 2024-03-31

INISection::= INISP? "[" INISP? (INIChar - "]")+ INISP? "]"
 INISP? ("%script" INISP? "=" INISP? (INIChar - ININewLine)*)?

INIProps ::= INICommand*

/**/
/* JSON X-script */
/**/

JSONComment ::= "/*" ([^*]+ | "*" - "*/")* "*/"

JSONSP ::= (WhiteSpace | JSONComment)+ /* sequence of whitespaces and comments */

JSONControlchar ::= '\"' | '\\' | '\/' | '\b' | '\f' | '\n' | '\r' | '\t' |
 ('\u' [0-9a-fA-F]{4})

JSONString ::= ('"' ([^\"] | JSONControlchar)* '"' |
 "'" ([^\'] | JSONControlchar)* "'")

JSONX-script ::= JSONSP? (("%script" JSONSP? "=" JSONSP? JSONString)
 | ("%oneOf" (JSONSP? "=" JSONSP? JSONString)?)) (JSONSP? ",")?

JSONPair ::= ("%anyName" (JSONSP? "=" JSONSP? JSONString)?
 | $ncName | JSONString) JSONSP? ":" JSONSP? JSONScriptValue

JSONMembers ::= JSONSP? JSONPair (JSONSP? "," JSONSP? JSONPair)* (JSONSP? ",")?

JSONObject ::= "{" JSONX-script? JSONMembers? JSONSP? "}"

JSONList ::= JSONScriptValue (JSONSP? "," JSONSP? JSONScriptValue)* (JSONSP? ",")?

JSONArray ::= "[" JSONX-script? JSONSP? JSONList? JSONSP? "]"

JSONScriptValue ::= JSONSP? ("%any" | JSONString | JSONArray | JSONObject) JSONSP?

jsonScript ::= JSONSP? (JSONArray | JSONObject | JSONString)

]]>
</xd:BNFGrammar>

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 101 / 104

Appendix B: XON syntax
/************************/
/* XON Basic rules */
/************************/
AnyChar ::= $UTFChar - '\' - '"'
Letter ::= $letter
AsciiChar ::= [-~]
WhiteSpace ::= [#9#10#13]
LWS ::= [#9]+ /* linear white spaces */
Comment ::= "/*" ([^*]+ | "*" - "*/")* "*/"
B64text ::= ((S | [-a-zA-Z0-9+/])+ '='? S? '='? S?) /* base64 */
CharsetName ::= ([a-zA-Z] ('-'? [a-zA-Z0-9]+)*) $rule
S ::= (WhiteSpace | Comment)+ /* Sequence of whitespaces or comments */
IntPart ::= [0-9] [0-9]*
HexDigit ::= [0-9] | [a-fA-F]
SignedInteger::= '-'? ('0' | [1-9] [0-9]*)
Exponent ::= ('e' | 'E') ('+' | '-')? IntPart
FloatPart ::= '.' IntPart Exponent? | Exponent
FloatNumber ::= SignedInteger FloatPart
Number ::= (SignedInteger | FloatNumber)
/***********************/
/* Date and time */
/***********************/
yearFrag ::= '-'? [0-9]*
monthFrag ::= '0' [1-9] | '1' [0-2]
dayFrag ::= '0' [1-9] | [12] [0-9] | '3' [01]
hourFrag ::= [01] [0-9] | '2' [0-3]
minuteFrag ::= [0-5] [0-9]
secondFrag ::= ([0-5] [0-9]) ('.' [0-9]+)?
endOfDayFrag ::= '24:00:00' ('.' '0'+)?
timezoneFrag ::= 'Z' | ('+' | '-') (('0' [0-9] | '1' [0-3])
 (':' minuteFrag)? | '14:00' | ('0' [0-9] | '1' [0-3]) [0-5] [0-9] | '1400')
dateFrag ::= yearFrag | yearFrag '-' monthFrag ('-' dayFrag)?
 | '--' monthFrag | '--' monthFrag '-' dayFrag | '---' dayFrag
date ::= 'd' (yearFrag '-' monthFrag ('-' dayFrag)? timezoneFrag?
 | yearFrag timezoneFrag? | '--' monthFrag timezoneFrag?
 | '--' monthFrag '-' dayFrag timezoneFrag? | '---' dayFrag timezoneFrag?)
timeFrag ::= ((hourFrag ':' minuteFrag ':' secondFrag) | endOfDayFrag)
 | (hourFrag ':' minuteFrag)
time ::= 'd' timeFrag timezoneFrag?
dateTime ::= 'd' dateFrag 'T' (timeFrag | endOfDayFrag) timezoneFrag?

/******************/
/* Duration */
/******************/
duYearFrag ::= [0-9]+ 'Y'
duMonthFrag ::= [0-9]+ 'M'
duDayFrag ::= [0-9]+ 'D'
duHourFrag ::= [0-9]+ 'H'
duMinuteFrag ::= [0-9]+ 'M'
duSecondFrag ::= [0-9]+ ('.' [0-9]+)? 'S'
duYMonthFrag ::= (duYearFrag duMonthFrag?) | duMonthFrag
duTimeFrag ::= 'T' ((duHourFrag duMinuteFrag? duSecondFrag?) | (duMinuteFrag duSecondFrag?)
 | duSecondFrag)
duDayTimeFrag::= (duDayFrag duTimeFrag?) | duTimeFrag
Duration ::= '-'? 'P' ((duYMonthFrag duDayTimeFrag?) | duDayTimeFrag)

/********************/
/* Byte array */
/********************/
Bytes ::= 'b(' B64text? ')'

/**********************/
/* GPS location */
/**********************/
BPSName ::= ('_' | Letter)+ ([- _.,/0-9] | Letter)*
GPS ::= 'g(' Number ',' ' '? Number (',' ' '? Number)? (',' ' '? (BPSName|String))? ')'

/******************/
/* Currency */
/******************/
Currency ::= 'C('[A-Z]{3}')'

/***************/
/* Price */
/***************/

X-definition 4.2 Language Description

102 / 104 Version: 4.2.2.26, Date: 2024-03-31

Price ::= 'p(' IntPart FloatPart? ' ' [A-Z]{3}')'

/***********************/
/* Email address */
/***********************/
CommentList ::= ('(' CommentPart* ')' (LWS? '(' CommentPart* ')')*)
CommentPart ::= (AsciiChar - [()])+ (LWS? CommentList)?
EmailComment ::= LWS? (CommentList $rule) LWS?
Atom ::= ([-0-9a-zA-Z_])+
Domain ::= '@' Atom ('.' Atom)*
LocalPart ::= Atom ('.' Atom)*
EmailAddr ::= LocalPart Domain
EnclosedEmail::= '<' EmailAddr '>'
Ptext ::= ((AsciiChar - [@><()=])+)
EText ::= ((EmailComment* (TextItem | EmailComment)*)
 | EmailComment* LWS? Ptext)? EmailComment*
HexOctet ::= '=' [0-9A-F] [0-9A-F]
Qtext ::= ((HexOctet | AsciiChar - [=?])+)/*quoted*/
TextItem ::= LWS? '=?' CharsetName '?' ('Q?' Qtext | 'B?' B64text) '?='
Email ::= 'e"' ((EText? LWS? EnclosedEmail
 | (EmailComment* EmailAddr)) (LWS? EmailComment)*) '"'

/*************/
/* URI */
/*************/
SchemeName ::= [a-zA-Z]+ '://'
URI ::= 'u"' SchemeName AnyChar+ '"'

/****************/
/* IPAddr */
/****************/
IPv4part ::= '2' [0-5] [0-9] | [0-1] [0-9] [0-9] | [0-9]{1,2}
IPv4 ::= IPv4part ('.' IPv4part) {3}
IPv6part ::= HexDigit {1,4}
IPv6 ::= IPv6part (':' IPv6part) {7}
IPAddr ::= '/' (IPv6 | IPv4)

/*******************/
/* Character */
/*******************/
Char ::= 'c"' StringPart '"'

/****************/
/* String */
/****************/
UTFChar ::= '\u' HexDigit {4} /*hexadecimal specification of char*/
StringPart ::= '\\' | '\"' | '\n' | '\r' | '\t' | '\f' | '\b' | UTFChar | AnyChar
String ::= '"' StringPart* '"'

/******************/
/* Boolean */
/******************/
Boolean ::= 'true' | 'false'

/**************/
/* Null */
/**************/
Null ::= 'null'

/************************/
/* Numeric values */
/************************/
Byte ::= SignedInteger 'b'
Short ::= SignedInteger 's'
Integer ::= SignedInteger 'i'
Long ::= SignedInteger 'l' ?
BigInteger ::= SignedInteger 'N' "l" ?
Decimal ::= SignedInteger 'D' | FloatNumber 'D'
Float ::= SignedInteger 'f' | FloatNumber 'f' | 'NaNf' | '-'? 'INFf'
Double ::= SignedInteger 'd' | FloatNumber 'd'? | 'NaN' | '-'? 'INF'
XonNumber ::= Double | Float | Decimal | Byte | Short | Integer | BigInteger | Long

/***********************/
/* Simple values */
/***********************/
SimpleValue ::= S? (Null | Boolean | String | XonNumber | dateTime | time | date | Duration
 | Bytes | Char | URI | IPAddr | Email | GPS | Currency | Price)

/********************/
/* XON values */
/********************/

Language Description X-definition 4.2

Version: 4.2.2.26, Date: 2024-03-31 103 / 104

Array ::= S? '[' (XonValue (S? ',' XonValue)*)? S? ']'
NCName ::= ('_' | Letter) ([-_.0-9] | Letter)*
NamedValue ::= S? (NCName | String) S? ':' XonValue
Map ::= S? '{' (NamedValue (S? ',' NamedValue)*)? S? '}'
XonValue ::= Array | Map | SimpleValue

/*****************/
/* XON data */
/*****************/
Directive ::= '%encoding' S? '=' S? '"' CharsetName '"'
xon ::= Directive? XonValue S?

X-definition 4.2 Language Description

104 / 104 Version: 4.2.2.26, Date: 2024-03-31

References
[1] Extensible Markup Language (XML) 1.0, W3C Recommendation, http://www.w3c.org/TR/REC-xml

[2] W3C Date and Time Formats, http://www.w3c.org/TR/NOTE-datetime

[3] W3C XML Schema, http://www.w3c.org/TR/xmlschema-1 , http://www.w3c.org/TR/xmlschema-2

[4] XML Path Language (XPath) 3.1 https://www.w3.org/TR/xpath-31/

[5] James Gosling, Bill Joy, Guy Steele, Gilad Bracha: The Java Language Specification,
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html

[6] The JSON Data Interchange Syntax
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

[7] XSL Transformations (XSLT) Version 3.0 https://www.w3.org/TR/xslt-30/#json

[8] Michael Key, Transforming JSON using XSLT 3.0, XML Prague 2016,
https://www.saxonica.com/papers/xmlprague-2016mhk.pdf

[9] Curt Selak, Sourceforge 2021, X-definition For Beginner,
https://sourceforge.net/p/X-definition-beginner-xml/wiki/Home/

[10] Curt Selak, DZone Java 2022, Extracting Data From Very Large XML Files With X-definition,
https://dzone.com/articles/extracting-data-from-very-large-xml-files-with-x-d

[11] Namespaces in XML 1.1 (Second Edition) (w3.org)

http://www.w3c.org/TR/REC-xml
http://www.w3c.org/TR/NOTE-datetime
http://www.w3c.org/TR/xmlschema-1
http://www.w3c.org/TR/xmlschema-2
https://www.w3.org/TR/xpath-31/
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.w3.org/TR/xslt-30/#json
file:///C:/Users/kotora/AppData/Roaming/Microsoft/Word/viz%20https:/www.saxonica.com/papers/xmlprague-2016mhk.pdf
file:///C:/Users/kotora/AppData/Roaming/Microsoft/Word/viz%20https:/www.saxonica.com/papers/xmlprague-2016mhk.pdf
https://sourceforge.net/p/x-definition-beginner-xml/wiki/Home/
https://dzone.com/articles/extracting-data-from-very-large-xml-files-with-x-d
https://www.w3.org/TR/xml-names11/

