

X-definition 4.2

 Introduction to the Construction Mode

 Author: Václav Trojan

 Version: 4.2.0.0
 Date: 2022-06-15

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 i

Contents
1 Notice ... 1

2 Introduction .. 1

3 How to run Construction mode in Java ... 2

4 Explicit Specification of Data Source for Construction .. 2
4.1 Overview of value types of the context of the create section.. 6

5 Groups .. 7
5.1 xd:sequence ... 7
5.2 xd:mixed ... 8
5.3 xd:choice .. 9

6 The context for XML construction .. 10
6.1 Context used for the creation of the group xd:sequence .. 12
6.2 Context used for the construction of the group xd:choice .. 13
6.3 Context used for the construction of the group xd:mixed ... 14

7 The use of the result of XPath expression (method "from")... 15

8 A combination of the validation mode and construction mode ... 17

9 Template model.. 19
9.1 Example of HTML creation using the template model ... 20

Tables

Table 1 - Used terms and abbreviation ... 1
Table 2 - Types of values of the context of an element ... 6

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 1 / 21

1 Notice

Questions, remarks, and bug reports please send to: xdef@syntea.cz.
The actual version of X-definition can be downloaded from https://github.com/Syntea/xdef

or https://www.xdefinice.cz/en/download/.
You can also download jar files, documentation, and sources from the Nexus repository manager at:

https://oss.sonatype.org/#nexus-search;gav~org.xdef.

2 Introduction
The prerequisite to reading this text is that the reader is familiar with the validation mode of X-definition and
understands the X-definition X-script language. Here we describe step by step the construction mode of
X-definition. Hopefully, the reader will finally appreciate the benefits and simplicity of this way of creating XML
data.

In the validation mode, the activity of the X-definition processor is controlled by XML input data, whereas in the
construction mode, the processor is controlled by the X-definition itself. This means that the output XML data is
created according to the information recorded in the X-definition. Thus, instead of processing the input document
where the models corresponding to the input data are searched for in X definition (i.e. the process is "controlled"
by the input data), in the construction mode X definition is used as a formula for the construction of the result
(i.e., the process is in this case "controlled" by the X-definition). Commands that provide the data needed to
create the resulting data are specified in the "create" sections of the X-script of the models. Let's note in this
context that when creating the resulting document, the specification of the "create" section can even be omitted,
and then an implicit action is performed to provide the construction of the resulting data. It is important to note
that the code of the "create" section is executed only in the construction mode and is ignored in the validation
mode. However, in the beginning, we will show the behavior of the X-definitions consistently with the explicit
specification of the "create" section of the X-script.

Note: Below the examples are the Internet addresses where you can click and run the appropriate X-definition
given in the example and even modify it.

Table 1 - Used terms and abbreviation

Term Explanation

XML Extensible Markup Language

X-definition 1. XML-based language designed for the description of XML objects
2. XML file containing data written in X-definition language

validation mode X-definition processing mode that validates XML input data

construction mode X-definition processing method that results in XML data (or a JSON or
X-component object).

quantifier Specification of the minimum and maximum occurrence of an item in the
model

attribute XML attribute

element XML element

text node the child node of an XML element containing a string value

model Description of XML element in X-definition language

X-script The programming language used in models and declaration parts of
X-definition

context Data internally used for the construction of XML objects

data source Data which are set as the context for the actual model

string A sequence of characters allowed in XML data

ResultSet An object which is the result of a relational database query command

NamedValue Pair of name (a string) and a value

Container An object containing a sequence of data values and a map of named values

reporter An object containing messages reported during the processing of X-definition

mailto:xdef@syntea.cz
https://github.com/Syntea/xdef
https://www.xdefinice.cz/en/download/
https://oss.sonatype.org/#nexus-search;gav~org.xdef

X-definition 4.2 Introduction to the Construction Mode

2 / 21 Version: 4.2.0.0, Date: 2022-06-15

X-definition
processor

The Java program, which implements the processing of X-definition

3 How to run Construction mode in Java
In the Java program, we run the design mode from the "org.xdef.XDDocument " object using the "xcreate"
method. The result of this method is the "org.w3c.dom.Element" object. The parameter of this method is the
"javax.xml.namespace.QName" object, which refers to the model according to which the result is to be created
(or, if the model does not have a namespace URI, it is enough to enter a string with the model name). Of course,
the X definition must have such a model. The second parameter of the "xcreate" method is a reporter (the
"org.xdef.ReportWriter" object), which writes errors found during the creation process. If the reporter value is
"null" and some errors are reported, then the run of the X processor definitions is terminated except
"RuntimeException" which is text containing the error messages.

A typical sequence of Java commands to run the construction mode:

XDPool xpool = XDFactory. compileXD(...);
XDDocument xd = xpool. createXDDocument(name); /* name of X-definition */
QName qname = new QName(uri, name); /* reference to model */
...
ArrayReporter reporter = new ArrayReporter();
Element elem = xd.xcreate(qname, reporter);
if (reporter.errors()) {
 // processing of errors
}

If we want to set the default source data for the construction mode (we speak about "context" - see Chapter 6.
The context for XML construction), before calling the method "xcreate" we call the "setXDContext(...)" method
with the parameter with an object containing context data:

xd.setXDContext("project/data.xml");
xd.xcreate(qname, reporter);

4 Explicit Specification of Data Source for Construction
First, we assume that in the construction mode, the "create" section is mandatory and that the objects are
created from the values returned by the command in this section.

Let's take the simplest example and ask what may be the result of the command in the corresponding "create"
section so that the X-definition processor can create the desired element. In other words, what the processor
must know (what value it expects in the "create" section) to construct the "A" element described in the following
model:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create ???"/>
</xd:def>

Since "A" does not contain any additional data, it is clear that the only thing the processor needs to know is if the
element "A" is to be created or not. In this case, the Boolean value should be enough. The X-definition can thus
take the form:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create true"/>
</xd: def>

See https://xdef.syntea.cz/tutorial/en/example/C201.html

The result will be:

<A/>

Simple! Try the Internet link and see for yourself. If the result of the "create" command were "false", the "A"
element would not be created (and the processor would report the error that the required element was not
created). You can try to modify the text in the window with the X-definition.

https://xdef.syntea.cz/tutorial/en/example/C201.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 3 / 21

However, generally, the "boolean" type of value is not sufficient for all cases. Take a more complicated example.
In element "A" we will require a certain number of "B" elements as child nodes of "A":

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create true">
 <B xd:script="occurs *; create ???"/>

</xd:def>

If we wrote "true" in the creation section of the "B" element, we would have to wait a long time for the result and
the program would end with a memory overflow because the elements corresponding to the occurrence
condition would gradually be created. Do not even try it. But we can solve the problem easily. We simply write the
number of elements we require. So our X-definition will look like this:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create 1">
 <B xd:script="occurs *; create 3"/>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C202.html

Thus, three elements "B" and the result will be:

<A>

An attentive reader can also modify the X-definition as follows:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create true">
 <B xd:script="occurs *; create 3"/>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C203.html

As we have seen, to create an element, we generally need to know the condition if an element is to be created. If
the result of the command in the "create" section is a "Container" object or a sequence of items (e.g. from
"xpath", "xquery", database table rows, etc.), we can look at this value as an iterator and the individual elements
from it are created.

So, another option is to get by the "create" command a set of values according to which the result will be
constructed. For example, we can use the "Container" type, which, as we know, may contain a sequence of items.
Each item in the sequential part of the Container object is used (if it is not null) as a basis for creating a result.
Modify our example by giving a set of items to the "create" section (remember that the entry "[false, 0, 'abc'] is a
constructor for the "Container" with three items: false, 0, and the string "abc"):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create true">
 <B xd:script="occurs *; create [false, 0, 'abc']"/>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C204.html

Three elements "B" are created again. The container has three items, the result will be generated from all values
of the Container (even the value "false" or 0) except the "null" value. Therefore the result will be:

<A>

The following X-definitions do not create any element "B" since the Container is empty:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create true">
 <B xd:script="occurs *; create []"/>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C205.html

The result will be:

<A/>

https://xdef.syntea.cz/tutorial/en/example/C202.html
https://xdef.syntea.cz/tutorial/en/example/C203.html
https://xdef.syntea.cz/tutorial/en/example/C204.html
https://xdef.syntea.cz/tutorial/en/example/C205.html

X-definition 4.2 Introduction to the Construction Mode

4 / 21 Version: 4.2.0.0, Date: 2022-06-15

It is obvious that the same result is achieved, for example, by the following X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create true">
 <B xd:script="occurs *; create [null, null, null]"/>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C206.html

Now, let us ask ourselves what happens if we put an XML element as a data source into the create section. Let's
look at the X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create new Element('X')"/>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C207.html

The program has an object, even an XML element. Let's say at the beginning that the processor does not care for
the name of the element (except for the element "xd: any" - if the reader goes on reading, he'll see why). Let's
have an element "X" that we pass as a data source for the design of the desired element "A". The result will again
be:

<A/>

The reader will surely answer the question of what will be the result from the following X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create null">
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C208.html

What happens when the data source is a string? So:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
 <A xd:script="create 'blabla'">
 required string();

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C209.html

Even in this case, we get the "A" element (unless the string value was "null"). Let's examine another interpretation
now. The processor produces from the string an auxiliary element that will have a text value taken from the string
value. This auxiliary element will then be used as a data source for the construction of the element in a given
model (this property makes it easy to create text-based elements). So, the result will be:

<A>blabla

Let's describe the situation that is one of the most typical variants for real usage. Imagine that we want to create
our XML element from another XML element. The source data for the construction of an element can be provided
either as a result of an XPath expression or as a result of a database statement.

First, we show you how to proceed using the XPath command. Let's take the following XML element as a data
source for the construction of the following result:

<X>
 <A/>
 <Y/>
 <Z/>
 <A/>
 <Z/>
</X>

The desired result is the element "A" whose descendants "B" will be created from all elements "A" from the data
source. We also require the "C" element to be created from the second occurrence of the element "Z". The
desired result will therefore be:

<A>
 (to be created for the first "A")
 (to be created for the second "A")
 <C/> (to be created for the second "Z")

https://xdef.syntea.cz/tutorial/en/example/C206.html
https://xdef.syntea.cz/tutorial/en/example/C207.html
https://xdef.syntea.cz/tutorial/en/example/C208.html
https://xdef.syntea.cz/tutorial/en/example/C209.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 5 / 21

When designing the X definition, we will use the X-script method "xpath(...)", with the XPath expression being the
first parameter, and as the second parameter, we will use the element on which the XPath expression is to be
performed. Let's note that the result of the "xpath" method is an object Container (we have already encountered
this variant) created from the NodeList object that is the result of the XPath expression:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 /* Create XML Element to "source" variable. */
 Element source = xparse("<X><A/><Y/><Z/><A/><Z/></X>");
]]>
</xd:declaration>
<A xd:script="create source"> /* "source" is the value for construction. */
 <B xd:script="occurs 1..*; create xpath('/X/A', source)"/>
 <C xd:script="occurs 1; create xpath('/X/Z[2]', source)"/>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C210.html

Element A is created from element X (as we already know, the name does not matter). All elements "B" are
created from all the elements "A" in the source and the element "C" is created from the second occurrence of the
element "Z". The result will therefore be the element we requested.

Now we ask ourselves how to set the attribute values and the text values to the result. Try to create an element
with the text value "Hi World!". What value do we need to create a text node or attribute? It's not hard to guess
that we'll need a string value of the value:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<A xd:script="create true">
 string; create "Hello world!"

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C211.html

We see that we simply added the required value to the create section. For the attributes, the situation will be
similar to that for text nodes. The result of the following X definition will surely be read by the reader himself:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<Person xd:script="create true"
 Name="string(); create 'John'"
 Surname="string(); create 'Smith'">
 string; create "Bad guy."
</Person>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C212.html

Let us add that if the object with the value is not to be created, we can set the value "null" as the data source (and
the "Salary" attribute will not be created):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<Person xd:script="create true"
 Name="string(); create 'John'"
 Surname="string(); create 'Smith'"
 Salary="optional int; create null"/>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C213.html

 Note that the data source for the value of the attribute or text node is a string. If we set a different type of data
source value, the automatic conversion to string will be performed (the "toString()" method will be executed -
unless the present value was null). It is therefore possible to write:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<Person xd:script="create true"
 Name="string(); create 'John'"
 Surname="string(); create 'Smith'"
 Salary="optional int; create 0001234"/>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C214.html

https://xdef.syntea.cz/tutorial/en/example/C210.html
https://xdef.syntea.cz/tutorial/en/example/C211.html
https://xdef.syntea.cz/tutorial/en/example/C212.html
https://xdef.syntea.cz/tutorial/en/example/C213.html
https://xdef.syntea.cz/tutorial/en/example/C214.html

X-definition 4.2 Introduction to the Construction Mode

6 / 21 Version: 4.2.0.0, Date: 2022-06-15

The leading zeros will be lost through conversion and the result will be:

<Person FirstName="Jan" Name="John" Surname="Smith" Salary="1234"/>

Now, try to create an element whose values will be taken from an element that we pass as a data source:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 /* Create XML Element to "source" variable. */
 Element source = xparse("<Person Name='John' Surname='Smith' Salary='0001234'/>");
]]>
</xd:declaration>

<Person xd:script = "create source"
 Name = "string; create xpath('@Name', source)"
 Surname = "string; create xpath('@Surname', source)">
 <Salary xd:script = "create xpath('@Salary', source)">
 string; create xpath('@Salary', source)
 </Salary>
</Person>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C215.html

The result will be:

<Person Name="John" Surname="Smith">
 <Salary>
 1234
 </Salary>
</Person>

Similarly, we can create an element based on the result of a database command. Let's have a database table
containing rows with the columns "name", "surname", and "salary". We pass the table to the program as the
object "ResultSet" object obtained from the database by the "query" command. The elements are created from
the rows of the table with the appropriate columns (note that the parameter of the method "getItem" is case
sensitive which is the property of the database commands):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 /*
 Access to a database is usually created in the Java program by the command
 DFactory.createSQLService(URL, user, password)
 and passed to the X-definition over an external variable.
 */
 Service service = new Service("jdbc:derby://localhost:1527/sample;", "myself", "blabla");

 /* Get table from database. */
 ResultSet persons = service.query("SELECT * FROM MYTEST.PERSON");
</xd:declaration>

<List xd:script="create true">
 <Person xd:script="occurs *; create persons"
 Name ="string; create persons.getItem('NAME')"
 Surname ="string; create persons.getItem('SURNAME')">
 <Salary xd:script="create persons.getItem('SALARY') != null">
 string; create persons.getItem('SALARY')
 </Salary>
 </Person>
</List>

</xd:def>

The "Person" elements will only be created if the lines in the ResultSet object are available. The "getItem(name)"
method returns a string with the value of the appropriate column of the actual row.

You can try the database example at https://xdef.syntea.cz/tutorial/en/example/C230.html

4.1 Overview of value types of the context of the create section

As we have seen one of the following types of values can be used to create elements. Remember that the number
of created elements is limited by the maximum specified in the qualifier.

Table 2 - Types of values of the context of an element

https://xdef.syntea.cz/tutorial/en/example/C215.html
https://xdef.syntea.cz/tutorial/en/example/C230.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 7 / 21

Value Result of construction

null creates nothing

element creates elements

int if positive creates elements according to the number

boolean elements are created if the value is „true“

String elements are created if the value is a non-empty string

Container elements are created if the value is a nonempty Container.

ResultSet elements are created from rows of the table from ResultSet

other types value is converted to a String and behaves as String

For attributes or text nodes, the source value is converted to a string and the attribute or the text node is created
if the value is not "null" and the string is not empty.

5 Groups
In the following text let's see how the groups "xd:sequence", "xd:choice" and "xd:mixed" behave in the
construction mode. Let us remember again that the X-definition serves as the description according to which the
result is constructed. We will discuss each type of group separately.

5.1 xd:sequence

Let's first show the construction of the group "xd:sequence". If we write a "create" command to the X-script, the
result of this command is used to create the elements of this group similar to the creation of the child nodes of
the element. Let's start with a simple example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<A>
 <xd:sequence xd:script= "occurs *; create 2">
 <B xd:script= "create true"/>
 required string; create "Text";
 <C xd:script= "create true"/>
 </xd:sequence>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C311.html

The result:

<A>

 Text
 <C/>

 Text
 <C/>

As the reader is sure to expect, the group elements were created twice (in the "create" command for the group a
number 2 was entered).

If the data source for group creation "xd:sequence" is a list of nodes resulting from the XPath expression the
situation will be similar to the generation of the child nodes of an element. We'll show it in the example that we
discussed in the previous chapter. Let us, therefore, take the data source to produce the result:

<X>
 <A/>
 <Y/>
 <Z/>
 <A/>
 <Z/>
</X>

https://xdef.syntea.cz/tutorial/en/example/C311.html

X-definition 4.2 Introduction to the Construction Mode

8 / 21 Version: 4.2.0.0, Date: 2022-06-15

Let the element "A" be the desired result. Its descendants are described by the sequence in which the "B"
elements will be created from the "A" elements from the data source and the "C" element will be created from
the second occurrence of the "Z" element. The desired result will therefore be:

<A>
 (created from the first "A")
 (created from the second "A")
 <C/> (created from the second "Z")

As the data source for sequence construction, we pass the element "source" in the following X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 /* Create the element as source data. */
 Element source = xparse("<X><A/><Y/><Z/><A/><Z/></X>");
]]>
</xd:declaration>

<A>
 <xd:sequence>
 <B xd:script="occurs 1..*; create xpath('/X/A', source)"/>
 <C xd:script="occurs 1; create xpath('/X/Z[2]', source)"/>
 </xd:sequence>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C312.html

5.2 xd:mixed

Let's look at the group "xd:mixed" and take the following X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<A>
 <xd:mixed>
 <B xd:script= "create true" />
 required string; create "Text";
 <C xd:script= "create true" />
 </xd:mixed>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C321.html

The result will be similar to the group "xd:sequence" (models of child nodes of the group are executed in the
order they are written to the X-definition):

<A>

 Text
 <C/>

Let's look at a more complicated case. Here, we try to create a result using the "xd:mixed" group of the data we
pass through the element:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 /* Create the element with source data. */
 Element source = xparse("<A><C/>");
]]>
</xd:declaration>

<A>
 <xd:mixed>
 <B xd:script="create xpath('B', source)"/>
 <C xd:script="create xpath('C', source)"/>
 </xd:mixed>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C322.html

https://xdef.syntea.cz/tutorial/en/example/C312.html
https://xdef.syntea.cz/tutorial/en/example/C321.html
https://xdef.syntea.cz/tutorial/en/example/C322.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 9 / 21

Note that if we process the input data in the validation mode with the input with the element which is in the
variable "source" the order of the descendants of element "A" would be the same as is in the input:

<A>
 <C/>

But the result will be:

<A>

 <C/>

This is because the "xd:mixed" elements are processed in the order in which they are written in X-definition (the
process is controlled by X-definition).

5.3 xd:choice

Let's finally ask what happens when we use the "xd:choice" group:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<A>
 <xd:choice xd:script= "*; create 2">
 <B xd:script= "create true" />
 required string; create "Text";
 <C xd:script= "create true" />
 </xd:choice>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C331.html

The processor in this case, in each iteration (we requested two), chooses the first satisfactory variant (in our case,
element "B") and the result will be:

<A>

If we wanted to influence which option the processor had to choose, we would have to write somehow in the
X-script which option should be chosen. E.g.:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration> int i = 0; </xd:declaration>
<A>
 <xd:choice xd:script= "*; create 3">
 <B xd:script= "create i++ == 0" />
 string; create i++ == 2 ? "Text" : null;
 <C xd:script= "create i++ == 5" />
 </xd:choice>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C332.html

The result will be:

<A>

 Text
 <C/>

Let the reader explain why (help: after the processed variant the other variants are not processed).

Let's try to create a result using the "xd:choice" group from the data we pass through the element:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 /* Create the element as source data. */
 Element source = xparse("<A><C/>");
]]>

https://xdef.syntea.cz/tutorial/en/example/C331.html
https://xdef.syntea.cz/tutorial/en/example/C332.html

X-definition 4.2 Introduction to the Construction Mode

10 / 21 Version: 4.2.0.0, Date: 2022-06-15

</xd:declaration>
<A>
 <xd:choice>
 <B xd:script="create xpath('B', source)"/>
 <C xd:script="create xpath('C', source)"/>
 </xd:choice>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C333.html

The result will be:

<A>

The reason why the "C" element which is the first in the descendant sequence is not created is the same as in the
previous cases: the processor handles the X-definition sequentially and performs the first "B" model.

6 The context for XML construction
In the previous explanation, we consistently specified data for the creation of each resulting XML object. In the
X-script, we specified in the "create" section for each item to be created a command that returned the value by
which the processor should produce the result. We did not suppose the X-definition processor "knows" what we
did in the previous step. Such writing is often not necessary. Either the "create" command can be omitted
altogether (then the default operation is performed), or we can refer to the data from the previous operation of
the command "create" from which the entire parts of the resulting XML object can be created. The source data
used in the construction mode in this case is called the "context" for creating XML objects.

Let's start with the situation we have already mentioned, namely the possibility of creating an element from a text
value. We show a variant where we explicitly do not specify a value for the text element's data source: it is
automatically taken from the source element data and becomes the context for creating additional items. You can
write the "Salary" element without specifying the "create" section in the X-script of the node. The element is
created according to the rule explained in the previous chapter. We skipped the specification of the "create"
section for the text value. Data is automatically taken from the text of the source element value, which will
become the context for further processing:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 /* Create the element with source data. */
 Element source = xparse("<A>1234");
]]>
</xd:declaration>
<Person>
 <Salary xd:script= "create source">
 required int; /* value is taken from the context */
 </Salary>
</Person>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C341.html

Since we already know that an element with a text value is automatically created from a string (and this becomes
a context), we can also write the X definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<Person>
 <Salary xd:script = "create '1234'">
 required int;
 </Salary>
</Person>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C342.html

We see that for the construction of the element "Salary", a string value that has become the context for creating
the descendants of this element (in our case the text value of the element) was used.

https://xdef.syntea.cz/tutorial/en/example/C333.html
https://xdef.syntea.cz/tutorial/en/example/C341.html
https://xdef.syntea.cz/tutorial/en/example/C342.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 11 / 21

Or, if we use a database (the variable "source" is ResultSet and the "getItem" method returns a string with the
corresponding column):

<Salary xd:script= "create source.getItem('SALARY')">
 required int;
</Salary>

How will it be with element attributes? If you omit the "create" section in the attribute description, the
appropriately named values from the context will be used for the construction of attributes in the model (e.g.
element attributes, column entries in the database table rows, "NamedValue" values in the "Container" object,
etc.). Thus, if we specify an element as the data source with the "name" and "receive" attributes, the attribute
values in the generated result will automatically be taken from the context. In the following example, the "Plat"
element is also generated from context. The X-definition will take the form:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source = xparse("<X Name='John' Surname='Smith'><Salary>1234</Salary></X>");
]]>
</xd:declaration>

<Person xd:script= "create source"
 Name = "string;"
 Surname = "string;">
 <Salary>
 required int;
 </Salary>
</Person>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C343.html

The result will be:

<Person Name='John' Surname='Smith'><Salary>1234</Salary></Person>

If the child items are produced from the data source that we passed to the element, the context will automatically
be used for each child descendant. Context then becomes the context for inner items. It should be remembered
that as a data source for the creation of internal data elements, the elements with the same name as the context
will automatically be used. When creating a text value, the corresponding text value from the context will be
used. Let us show how the element "A" will be created from the element "X". The model of element A is described
by the following X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source =
 xparse("<X a1='a1' a2='a2'>XXX<R a='1'><S>SSS</S></R><Q>QQQ</Q><P>PPP</P></X>");
]]>
</xd:declaration>
<A xd:script= "create source"
 a1 = "string;"
 a2 = "string;">
 <P>
 string;
 </P>
 <Q>
 string;
 </Q>
 <R a= "int">
 <S>
 string;
 </S>
 </R>
 string;

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C344.html

Note that elements were selected from the context in the order that corresponds to the model rather than to the
data source. The result will be (indentation of the result is used for better readability):

<A a1="a1" a2="a2">
 <P>

https://xdef.syntea.cz/tutorial/en/example/C343.html
https://xdef.syntea.cz/tutorial/en/example/C344.html

X-definition 4.2 Introduction to the Construction Mode

12 / 21 Version: 4.2.0.0, Date: 2022-06-15

 PPP
 </P>
 <Q>
 QQQ
 </Q>
 <R a="1">
 <S>
 SSS
 </S>
 </R>
 XXX

Let's look at the behavior of groups with context.

You can also use the "Container" value as a context. Named values are assigned to attributes with corresponding
names. The value of "1234" from the sequence section is used to create the element "Salary" and its text value:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 /* Create a Container used as context for the creation of the model "Person". */
 Container source = [%Name='John', %Surname='Smith', '1234'];
</xd:declaration>

<Person xd:script= "create source"
 Name = "string;"
 Surname = "string;">
 <Salary>
 string;
 </Salary>
</Person>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C345.html

The result:

<Person Name="John" Surname="Smith">
 <Salary>
 1234
 </Salary>
</Person>

If the items in the sequence part of Container are again Container values, they will be used to create the
descendants of the model:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 /* Create a Container used as context for the creation of the model "Person". */
 Container source = [%A=[%a='A', [%b='B', 'C'], 'D']];
</xd:declaration>

<A xd:script= "create source"
 a = "string">
 <B b = "string">
 string

 string

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C346.html

The result:

 <B b="B">
 C

 D

6.1 Context used for the creation of the group xd:sequence

Let's try the following example of the X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">

https://xdef.syntea.cz/tutorial/en/example/C345.html
https://xdef.syntea.cz/tutorial/en/example/C346.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 13 / 21

<xd:declaration>
 <![CDATA[Element source = xparse("<X><B a='b'/><C a='c'/></X>");]]>
</xd:declaration>
<A>
 <xd:sequence xd:script="create source">
 <B a="string" />
 <C a="string" />
 </xd:sequence>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C411.html

The result will be as we expected:

<A>
 <B a="b"/>
 <C a="c"/>

Now put the sequence of internal elements with the quantifier to allow multiple iterations of the internal
elements and add the command create so that it generates several sequences:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source =
 xparse("<X><Y><B a='b'/><C a='c'/></Y><Y><C a='x'/></Y><Y><B a='y'/></Y></X>");
]]>
</xd:declaration>
<A>
 <xd:sequence xd:script="occurs *; create xpath('//Y', source)">
 <B xd:script="occurs ?" a="string" />
 <C xd:script="occurs ?" a="string" />
 </xd:sequence>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C412.html

The reader will easily explain why the result is the following (help: the result of XPath expression is all the "Y"
elements that are passed as a group creation context):

<A>
 <B a="b"/>
 <C a="c"/>
 <C a="x"/>
 <B a="y"/>

6.2 Context used for the construction of the group xd:choice

Let's again start with a simple example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
<![CDATA[
 Element source = xparse("<X><C a='c'/><B a='b'/></X>");
]]>
</xd:declaration>
<A>
 <xd:choice xd:script="create source">
 <B a="string" />
 <C a="string" />
 </xd:choice>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C421.html

The result will be:

<A>
 <B a="b"/>

https://xdef.syntea.cz/tutorial/en/example/C411.html
https://xdef.syntea.cz/tutorial/en/example/C412.html
https://xdef.syntea.cz/tutorial/en/example/C421.html

X-definition 4.2 Introduction to the Construction Mode

14 / 21 Version: 4.2.0.0, Date: 2022-06-15

The reason why element "B" is created and not "C" is that the process is controlled by X-definition. Here element
"B" is described earlier than element "C" which is first in the source data.

Now, modify our example for a group with a quantifier for more occurrences of the group content:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source = xparse("<X><Y><B a='b'/></Y><Y><C a='x'/></Y><Y><B a='y'/></Y></X>");
]]>
</xd:declaration>
<A>
 <xd:choice xd:script="occurs *; create xpath('//Y',source)">
 <B a="string" />
 <C a="string" />
 </xd:choice>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C422.html

The result:

<A>
 <B a="b"/>
 <C a="x"/>
 <B a="y"/>

The reader will easily explain why.

6.3 Context used for the construction of the group xd:mixed

Let's have a simple example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source = xparse("<X><C a='c'/><B a='b'/></X>");
]]>
</xd:declaration>
<A>
 <xd:mixed xd:script="create source">
 <B a="string" />
 <C a="string" />
 </xd:mixed>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C431.html

Surely you know why the resulting order of the elements in the mixed group will match the X-definition entry
rather than the order in the context:

<A>
 <B a="b"/>
 <C a="c"/>

Let's modify our example, as in the previous paragraph, for a mixed group:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source =
 xparse("<X><Y><B a='b'/><C a='c'/></Y><Y><C a='x'/></Y><Y><B a='y'/></Y></X>");
]]>
</xd:declaration>
<A>
 <xd:mixed xd:script="create xpath('//Y',source)">
 <B a="string" />
 <C a="string" />
 </xd:mixed>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C432.html

https://xdef.syntea.cz/tutorial/en/example/C422.html
https://xdef.syntea.cz/tutorial/en/example/C431.html
https://xdef.syntea.cz/tutorial/en/example/C432.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 15 / 21

The result will be:

<A>
 <B a="b"/>
 <C a="c"/>
 <C a="x"/>
 <B a="y"/>

In contrast to the choice group, the items of the result are in the same order as the input. The mixed group passes
all the variants sequentially until it finds an appropriate element and, until exhausted, all the variants begin again
from the first element in the model.

7 The use of the result of XPath expression (method "from")
When creating the resulting element, we often need to select a particular object from the context and possibly set
a new context for the descendants of the object being created.

In the examples in the previous text, we have shown the use of XPath expression on XML data. If the XML element
is a context for the element model, we can use the "from" method that executes the XPath expression above the
current context. Setting a new context by using the "from" method is also valid for all descendants created by this
command. Let's take a look at our example. Let's show an X-definition describing the element that we create from
different parts of the context:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source = xparse("<X a='a'><Y a='x'><Z a='b'/></Y><Y a='y'><Z a='c'/></Y></X>");
]]>
</xd:declaration>
<A xd:script="create source"> /* context with root element X */
 <B xd:script="create from('@a')"> /* context is attribute "a" of element X */
 string; create from('text()'); /* value taken from the attribute above */

 <C xd:script="occurs *; create from('Y/Z')"> /* sequence of elements Z */
 string; create from('@a'); /* the attribute "a" of "Z" is used to create the text node */
 </C>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C501.html

In the beginning, the context for creating the "A" element at the root of the source element is set. To create
element "B", the attribute "a" is used from the context set, and its value becomes the context for creating
element "B". As discussed in the previous text, a textual value of an element is created from the text value passed
by the "from" method (i.e., the value of attribute "a" of the current context). We also know that we could omit
the "create" section here. The "from" method used for element "C" returns all nodes that correspond to the "X /
X" path from the current context. The text value of these nodes is taken from the values of the attribute "a" of
these nodes. The result will be:

<A>
 a
 <C>b</C>
 <C>c</C>

Let's show an X-definition in which values are written in the source data into the element's text instead of the
attributes. The result will be the same as in the previous variant. Note that we can omit the "create" section for
creating the text of elements:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source = xparse("<X>a<X><X>b</X></X><X><X>c</X></X></X>");
]]>
</xd:declaration>
<A xd:script="create source">
 <B xd:script="create from('text()')">
 string;

 <C xd:script="occurs *; create from('X/X')">

https://xdef.syntea.cz/tutorial/en/example/C501.html

X-definition 4.2 Introduction to the Construction Mode

16 / 21 Version: 4.2.0.0, Date: 2022-06-15

 string;
 </C>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C502.html

Vice versa, from the text nodes at the input we can create attributes:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source = xparse("<X>a<X><X>b</X></X><X><X>c</X></X></X>");
]]>
</xd:declaration>
<A xd:script="create source">
 <B xd:script="create from('text()')" a="string; create from('text()')"/>
 <C xd:script="occurs *; create from('X/X')" a="string; create from('text()')"/>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C503.html

The result:

<A>
 <B a="a"/>
 <C a="b"/>
 <C a="c"/>

Let's look at a slightly more complex example from the real world. Let the input data be in the following element:

<Item id="0123456789">
 <Client role="1" company="SomeCompany Ltd" cId="12345678" />
 <Client role="2" name="Peter" surname="Brown" pId="311270/1234" />
 <Client role="3" name="John" surname="Smith" pId="120455/2345" cId="87654321" />
</Item>

From this data, we create the element "Contract", in which the attribute "number" is taken from the attribute "id"
of the element "Item". Additionally, we also create the attribute "date" in which we store the current date and
time taken from the operating system. The internal elements "Owner", "Client" and "Holder" are created from the
"Client" elements depending on the value of the attribute "role". We create the element "Client" if the attribute
"role" has the value "1" (note that we used a backslash for the apostrophe inside the string). For attributes with
the same name as in the context, we can omit the "create" section. The element "Holder" is created from the
element "Client" if the value of the attribute "role" is "2". The other attributes are taken automatically from the
context. Finally, we create the element "Policyholder" from the element "Client" if the attribute "role" has the
value "3". The attribute "name" is composed of the values of the attributes "name" and "surname" from the
context. The "cId" attribute is again accepted automatically. The attribute "pId" here is not used). The X definition
that performs this transformation will take this form (note that the string can be declared in multiple rows in the
X-script):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2">
<xd:declaration>
 <![CDATA[
 Element source = xparse("<Item id='0123456789'>
 <Client role='1' company='SomeCompany Ltd' cId='12345678' />
 <Client role='2' name='Peter' surname="Brown" pId='311270/1234' />
 <Client role='3' name='John' surname='Smith' pId='120455/2345' cId='87654321' />
 </Item>");
]]>
</xd:declaration>

<Contract xd:script="create source"
 date ="required dateTime(); create now()"
 number ="required num(10); create from('@id')" >
 <Ownew xd:script="create from('Client[@role=\'1\']')"
 cId ="required num(8)"
 company ="required string(1,30)" />
 <Holder xd:script="create from('Client[@role=\'2\']')"
 pId ="required string(10,11) "
 name ="required string(1,30)"
 surname ="required string(1,30)" />
 <Policyholder xd:script="create from('Client[@role=\'3\']')"
 name ="required string(1,30); create from('@name') + ' ' + from('@surname')"
 cId ="required num(8)" />

https://xdef.syntea.cz/tutorial/en/example/C502.html
https://xdef.syntea.cz/tutorial/en/example/C503.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 17 / 21

</Contract>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C504.html

Result is:

<Contract date="2012-10-7T17:05" number="0123456789">
 <Owner company="SomeCompany Ltd" cId="12345678"/>
 <Holder pId="311270/1234" name="Peter" surname="Brown"/>
 <Policholder cId="87654321" namev="John Smith"/>
</Contract>

Let's show an example of how to generate only elements that have some descendants:

Input XML:

<a>
 <b x=”1”><c y=”11”>
 <b x=”2” />
 <b x=”3”><c y=”33”>
</a

The XPath expression in the create section of model nodes will be "b/*/..". So the X-definition:

<xd:def xmlns:xd=”http://www.xdef.org/xdef/4.2' root=”a”>
 <a>
 <b xd:script="*; create from('b/*/..');" x="string()">
 <c xd:script="*” y=”string()” />

</xd:def>

Note you can also write the XPath expression as e.g.: b/*/parent::*". You can try it on:

See https://xdef.syntea.cz/tutorial/en/example/C505.html

Result XML:

<a>
 <b x=”1”><c y=”11”>
 <b x=”3”><c y=”33”>

8 A combination of the validation mode and construction mode
Both X-definition modes, i.e. the validation mode and construction mode, can be combined. Let's use the previous
example, but first, validate the data using the model "Item" (note that the "xparse" method has a second
parameter with either the X definition name or "*" if the X definition has no name). When executing commands in
the section xd:declaration, the input data from the variable "data" is verified according to the model "Item"
(which must of course be declared as "root" in the X-definition). In the construction mode the validated element is
used as a context for the model "Contract" as in the previous example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" root="Item">
<xd:declaration>
<![CDATA[
 String data =
 "<Item id='0123456789'>
 <Client role='1' company='SomeCompany Ltd' cId='12345678' />
 <Client role='2' name='Peter' surname='Brown' pId='311270/1234' />
 <Client role='3' name='John' surname='Smith' pId='120455/2345' cId='87654321' />
 </Item>";
 Element source = xparse(data, "*");
]]>
</xd:declaration>

<Contract xd:script="create source"
 date ="required dateTime(); create now()"
 number ="required num(10); create from('@id')" >
 <Owner xd:script="create from('Client[@role=\'1\']')"
 cId ="required num(8)"
 company ="required string(1,30)" />
 <Holder xd:script="create from('Client[@role=\'2\']')"
 pId ="required string(10,11) "
 name ="required string(1,30)"

https://xdef.syntea.cz/tutorial/en/example/C504.html
https://xdef.syntea.cz/tutorial/en/example/C505.html

X-definition 4.2 Introduction to the Construction Mode

18 / 21 Version: 4.2.0.0, Date: 2022-06-15

 surname ="required string(1,30)" />
 <Policyholder xd:script="create from('Client[@role=\'3\']')"
 name ="required string(1,30); create from('@name') + ' ' + from('@surname')"
 cId ="required num(8)" />
</Contract>

<Item id='num(10)'>
 <Client role = 'int()' company = 'string()' cId = 'num(8)' />
 <Client role = 'int()' name = 'string()' surname = 'string()' pId = 'string()' />
 <Client role = 'int()' name = 'string()' surname ='string()' pId = 'string()' cId = 'string()' />
</Item>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C601.html

We can also specify the processing mode and construction mode in reverse order. First, we will process the source
XML document in the validation mode, and finally (in the section "finally" of the model "Item" which describes the
validated input data) we will create the result using the "xcreate" method, which will use the validated element as
a context. Note that the "create" section of the model "Contract" has been omitted because the document has
automatically set the validated data as a context. The result is set using the "setResultElement" method in the
section "finally" of the model "Item". The example follows:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" root = "Item">

<Contract
 date ="required dateTime(); create now()"
 number ="required num(10); create from('@id')" >
 <Owner xd:script="create from('Client[@role=\'1\']')"
 cId ="required num(8)"
 company ="required string(1,30)" />
 <Holder xd:script="create from('Client[@role=\'2\']')"
 pId ="required string(10,11) "
 name ="required string(1,30)"
 surname ="required string(1,30)" />
 <Policyholder xd:script="create from('Client[@role=\'3\']')"
 name ="required string(1,30); create from('@name') + ' ' + from('@surname')"
 cId ="required num(8)" />
</Contract>

<Item xd:script='finally returnElement(xcreate("Contract"))'
 id='num(10)' >
 <Client role = 'int()' company = 'string()' cId = 'num(8)' />
 <Client role = 'int()' name = 'string()' surname = 'string()' pId = 'string()' />
 <Client role = 'int()' name = 'string()' surname ='string()' pId = 'string()' cId = 'string()' />
</Item>

</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C602.html

Finally, here is an example that creates an HTML result from the wind and temperature measurements. As a
result, based on input data processing, measured daily data and the average temperature are displayed. We show
that during the processing you can prepare values for the result (see the variables "sum" and "num" which are
used to calculate the average temperature).

The input data:

<Weather date = "2005-05-11" >
 <Measurement wind = "5.3" temperature = "13.0" time = "05:00" />
 <Measurement wind = "7.2" temperature = "15.2" time = "11:00" />
 <Measurement wind = "8.7" temperature = "18.1" time = "15:00" />
 <Measurement wind = "3.9" temperature = "16.5" time = "20:00" />
</Weather>

The X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.2" root = "Weather">
<xd:declaration>
 float sum = 0; int num = 0;
</xd:declaration>

<Weather xd:script="finally returnElement(xcreate('html'))"
 date = "optional date()">
 <Measurement xd:script = "occurs +"
 wind = "required float(0, 150)"
 temperature = "required float(-40,60) /*limit sof temperature*/

https://xdef.syntea.cz/tutorial/en/example/C601.html
https://xdef.syntea.cz/tutorial/en/example/C602.html

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 19 / 21

 onTrue {num++; sum += getParsedFloat();}"
 time = "required time()" />
</Weather>

<html>
 <h3>string; create "Weather on " + from("@date")</h3>
 <li xd:script = "occurs +; create from('Measurement')">
 string; create "Time: " + from("@time") + ", wind: " + from("@wind") +
 ", temperature: " + from("@temperature")

 <h3 style="fixed 'background: yellow'">
 string; create num==0 ? "No data" : "Average temperature: " + sum/num
 </h3>
</html>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C603.html

The result:

<html>
 <h3>Weather on 2005-05-11</h3>
 Time: 05:00:00, wind: 5.3, temperature: 13.0
 Time: 11:00:00, wind: 7.2, temperature: 15.2
 Time: 15:00:00, wind: 8.7, temperature: 18.1
 Time: 20:00:00, wind: 3.9, temperature: 16.5
 <h3 style="background: yellow">Average temperature: 15.7</h2>
</html>

9 Template model
To create XML data in which the values are constant we can use the "template" model. It will be created by
entering the keyword "template" into the model X-script. The "template" command causes the text nodes and
attribute values of the model to be converted to an X-script in which these values are declared as constants. If we
need to use a variable in the model at some point, we have to use the X-script. We'll do this by writing down the
keyword "$$$script:" in an attribute or a text node. The text behind this entry is then processed in the usual way
as a X-script: For example:

<xd:def xmlns:xd='http://www.xdef.org/xdef/4.2' root='html' >
<html xd:script="template">
 <head>
 <title>Today</title>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1250"/>
 </head>
 <body bgcolor="lightblue">
 <h1>
 Today is:
 </h1>
 <h2>$$$script: string(); create now().toString('{L(en,US)}EEEE')</h2>
 <h3>
 This is an example of the template data in the construction mode.
 </h3>
 </body>
</html>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C701.html

The content of the text values in the model is automatically converted to an X-script where the text values are
converted as fixed values. The internally generated form of the model would look like this:

<html>
 <head>
 <title>
 fixed "Actual date";
 </title>
 <meta http-equiv="fixed 'Content-Type'"
 content="fixed 'text/html;'"
 charset="fixed 'windows-1250'"/>
 </head>
 <body bgcolor="fixed 'yellow'">
 <h1>
 fixed "Actual date:";
 </h1>
 <h2>

https://xdef.syntea.cz/tutorial/en/example/C603.html
https://xdef.syntea.cz/tutorial/en/example/C701.html

X-definition 4.2 Introduction to the Construction Mode

20 / 21 Version: 4.2.0.0, Date: 2022-06-15

 string(); create now().toString('{L(en,US)}EEEE, d. MMMM yyyy GG, hh:mm a')
 </h2>
 <h3>
 fixed "This is an example of the template data in the construction mode.";
 </h3>
 </body>
</html>

When executing the construction mode after writing "$$$ script:", the value is created by the "create" section as
already explained. The result will be:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Actual date</title>
 </head>
 <body bgcolor="yellow">
 <h1>Actual date:</h1>
 <h2>Friday, 5. August 2017 AD, 11:31 AM</h2>
 <h3>This is an example of the template data in the construction mode.</h3>
 </body>
</html>

9.1 Example of HTML creation using the template model

Let's finally give an example where we enter input data as a context and generate HTML data from them. We have
input data with the unsorted list of monarchs in the UK:

<monarchs>
 <monarch>
 <name>Charles III</name>
 <reigned>
 <start>2022</start>
 <end></end>
 </reigned>
 </monarch>
 <monarch>
 <name>Victoria</name>
 <reigned>
 <start>1837</start>
 <end>1901</end>
 </reigned>
 </monarch>
 <monarch>
 <name>Anne</name>
 <reigned>
 <start>1707</start>
 <end>1714</end>
 </reigned>
 </monarch>
 <monarch>
 <name>George I</name>
 <reigned>
 <start>1714</start>
 <end>1727</end>
 </reigned>
 </monarch>
 ...
</monarchs>

Some parts of the X-definition are described as a template model - see the "head" element and the first
occurrence of the "tr" element (table heading). Other data is generated from input data. Note that the data about
monarchs from the context - i.e. the result of the method from ("//monarch") - is sorted by the beginning of the
government (if the information at the end of the government is not filled, then the entry is empty):

<xd:def xmlns:xd='http://www.xdef.org/xdef/4.2' xmlns='http://www.w3.org/1999/xhtml'>
 <html xd:script='template'>
 <head><title> British monarchs </title></head>
 <body>
 <h2> British monarchs: </h2>
 <table border="create 'border'">
 <tr bgcolor="C0C0C0" xd:script='template'>
 <td>Monarch</td>
 <td>Reigned from</td>
 <td>Reigned to</td>
 </tr>
 <tr xd:script='*; create from("//monarch").sort("reigned/start/text()")'>

Introduction to the Construction Mode X-definition 4.2

Version: 4.2.0.0, Date: 2022-06-15 21 / 21

 <td bgcolor="fixed 'violet'">create from('name/text()')</td>
 <td bgcolor="fixed 'yellow'">create from('reigned/start/text()')</td>
 <td bgcolor="fixed 'lightgrey'">optional string(); create from('reigned/end/text()')</td>
 </tr>
 </table>
 </body>
 </html>
</xd:def>

See https://xdef.syntea.cz/tutorial/en/example/C711.html

The result:
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>British monarchs</title>
 </head>
 <body>
 <h2>British monarchs:</h2>
 <table border="create 'border'">
 <tr bgcolor="C0C0C0">
 <td>Monarch</td>
 <td>Reigned from</td>
 <td>Reigned to</td>
 </tr>
 <tr>
 <td bgcolor="violet">Anne</td>
 <td bgcolor="yellow">1707</td>
 <td bgcolor="lightgrey">1714</td>
 </tr>
 <tr>
 <td bgcolor="violet">George I</td>
 <td bgcolor="yellow">1714</td>
 <td bgcolor="lightgrey">1727</td>
 </tr>
...
 <tr>
 <td bgcolor="violet">Charles III</td>
 <td bgcolor="yellow">2022</td>
 <td bgcolor="lightgrey"/>
 </tr>
 </table>
 </body>
</html>

The result is displayed as HTML:

British monarchs:

Monarch Reigned from Reigned to

Anne 1707 1714

George I 1714 1727

George II 1727 1760

George III 1760 1820

George IV 1820 1830

Wiliam IV 1830 1837

Victoria 1837 1901

Edward VII 1901 1910

George V 1910 1936

Edward VIII 1936 1936

George VI 1936 1952

Elizabeth II 1952 2022

Charles III 2022

https://xdef.syntea.cz/tutorial/en/example/C711.html

